
Static Test Case Prioritization Strategies for
Grammar-Based Testing

Moeketsi Raselimo∗†, Lars Grunske∗, Bernd Fischer†
∗Humboldt-Universität zu Berlin, Germany

{raselimm, grunske}@informatik.hu-berlin.de
†Stellenbosch University, South Africa

bfischer@sun.ac.za

Abstract—Grammar-based test case generators can quickly
produce large test suites that structurally and systematically
cover the input space of a system under test. However, running
these large test suites requires large computation resources. In
this paper, we investigate whether simple test case prioritiza-
tion strategies based on statically determined grammar-related
properties (e.g., token-length of input, novel rule coverage, and
relative frequency of rule coverage), can detect faults in the
system under test faster. Our preliminary results indicate that
different test execution orderings from these strategies have an
effect on the fault detection rate. Their performance varies across
the different test suites, but they generally perform better than
a simple random ordering of test executions.

I. INTRODUCTION

Context-free grammars are widely used to describe the

structure of objects in complex domains, such as internal

and external file formats (e.g., pdf readers), generic inter-

change formats (e.g., XML, JSON, etc.), language specifi-

cations which are usually inputs to compiler-compiler tools,

and of course programming languages. Grammar-based testing

exploits the nature of grammars to automatically derive inputs

to exercise a system under test. However, the simplicity and

speed with which these test inputs can be generated often leads

to very large test suites whose execution requires substantial

resources; for example, grammar-based fuzzers routinely gen-

erate millions of test inputs [1].

Test case prioritization (TCP) strategies try to reduce the

resource requirements by reordering the test suites such that

the tests most likely to detect faults are executed first [2,

3, 4, 5, 6, 7, 8, 9]. TCP is typically applied in regression

testing, using information collected from the first execution

round (e.g., coverage, fault detection), and information about

the changes in the SUT. Most of the TCP techniques are

indeed coverage-driven and require white- or grey-box access

to the SUT, with only a few black-box techniques (such

as model-based strategies) proposed [10, 11, 12, 13]. Since

most grammar-based testing methods only use the model that

captures the SUT’s input space, without much knowledge of

its internal source code, it is not clear how ideas from TCP

techniques transfer to the domain of grammar-based testing.

In this paper, we describe and compare static test case

prioritization strategies specifically designed for grammar-

based testing. Our strategies use grammar-related properties

of the tests that can easily be collected during the derivation

process, such as their length in tokens, the set of rules used

in their derivation, or the relative frequency of these rules.

We evaluate the efficacy of our test prioritization strate-

gies using test suites derived systematically to satisfy certain

grammar coverage goals and randomized derivations. We

preliminarily evaluate these strategies on parsers derived from

grammars with seeded faults. Our experimental results indicate

that the baseline strategies, random ordering and test size,

perform the worst on a systematic test suite, while the novel

rule coverage finds the faults the fastest, and the rule frequency

based strategies find the last fault quickly than novel rule

coverage. For longer and deeper randomly generated tests,

however, results become less discriminatory because of the

smaller size of our SUTs. These random derivations seem to

favour test size, as longer test executions uncover more faults

earlier, but the random ordering still performs poorly.

The grammar-based oriented TCP strategies offer several

benefits. First, they can speed up fault detection; this is

obviously useful to correct SUT faults faster, but can also

be useful when the SUT’s applied input grammar is incorrect

or incomplete, i.e., in model hardening. Second, they can be

used to reduce the fuzzing load—grammar-based fuzzers can

utilize these strategies to generate diverse inputs. Third, our

results show that the strategies approach the maximum number

of faults detectable faster than random orders. This can be

exploited to develop up-front test suite reduction strategies.

The rest of the paper is organized as follows, Section II

provides background material and discusses how this paper

relates to existing studies. We describe domain specific test

prioritization strategies in Section III. We provide preliminary

evaluation in Section IV, we then conclude, and provide plans

for the extension of this work.

II. BACKGROUND AND RELATED WORK

In this Section, we provide some background material

necessary to understand the work, and discuss related work

drawn from existing empirical studies.

Grammar Notation. A context-free grammar (or simply

grammar, CFG) is a four-tuple G = (N,T, P, S), where

N , T , P , are disjoint sets of non-terminals, terminals, and

grammar productions, respectively, and and S ∈ N de-

notes the start symbol. In examples, we use italics and

151

2023 38th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)

2151-0849/23/$31.00 ©2023 IEEE
DOI 10.1109/ASEW60602.2023.00025

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

W
or

ks
ho

ps
 (A

SE
W

) |
 9

79
-8

-3
50

3-
30

32
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
EW

60
60

2.
20

23
.0

00
25

bold typewriter font for non-terminal and terminal sym-

bols, respectively; we use normal typewriter font for

structured tokens with different instances such as identifiers.

Derivations. We use αAβ ⇒ αγβ to denote that αAβ pro-
duces αγβ by application of the rule A → γ and use ⇒∗ for

its reflexive-transitive closure. We call a phrase α a sentential
form if S ⇒∗ α. The yield of α is the set of all words that can

be derived from it, i.e., yield(α) = {w ∈ T ∗ | α ⇒∗ w}. The

language L(G) generated by a grammar G is the yield of its

start symbol, i.e., L(G) = {w ∈ T ∗ | S ⇒∗ w}. w ∈ L(G) is

also called a sentence.

Test Suites. A test suite comprises a set of test inputs for

a system under test (SUT) and their corresponding outcome.

A test passes if it produces the expected output, and fails
otherwise.

In grammar-based testing, a test suite TS can comprise both

positive tests TS+ ∈ L and negative tests TS− /∈ L, with

the corresponding expected outputs accept and reject, but for

simplicity we will work only with positive tests.

Grammar-based Test Suite Construction. In grammar-based

testing, test inputs are typically constructed by deriving words

in the grammar’s language (although there are also approaches

to systematically construct negative tests that are not in the

language [14, 15]). There are two principal approaches to

deriving words, coverage-based and randomized.

Coverage-based approaches construct a set of derivations

that together satisfy a structurally defined criterion; for ex-

ample, rule coverage ensures that every rule in P is used

in the derivation of at least one test in the test suite (see

Figure 1 for an example). More complex criteria (e.g., context-

dependant rule coverage [16], which takes into account the

different contexts in which a rule can be applied, or derivability

coverage [17], which ensures that paths between all connected

pairs of symbols are covered) induce larger test suites with

more complex tests. For our evaluation, we use context-

dependant derivability coverage (cderiv), which ensures that

the derivability paths are started in a context corresponding to

each occurrence of a non-terminal symbol on the right-hand

side of each rule. We use the generic cover algorithm [18]

to derive the test suites. This algorithm constructs a separate

derivation for each coverage goal, leading to larger test suites

of smaller tests than related algorithms that try to satisfy

multiple coverage goals at the same time [19, 20], but all

coverage-based approaches induce some level of bias because

they necessarily need to use some rules more often than others

(see Table I).

Several other algorithms exist that yield sufficiently detailed

test suites that strike the right balance between syntactic reg-

ularity and variation, e.g., k-path coverage [20] or automata-

based methods [21, 22].

Randomized approaches iteratively construct derivations, by

randomly choosing a non-terminal occurrence in the sentential

form and expanding it with a randomly chosen rule [23].

Different implementations use different strategies for choosing

non-terminal occurrences and rules, and for completing the

sentential form into a word, in order to ensure termination.

Our implementation follows a breadth-first strategy, with the

depth k as a control parameter; when k is reached, it replaces

the unexpanded non-terminals in the sentential form with their

minimal yield.

Grammar-based fuzzers (e.g., LangFuzz [24] and IFuzzer

[25]) mostly use random sentence generation techniques, and

often exploit a given corpus to extract seed code fragments

[24, 25, 26]. Nautilus [27] exploits grey-box access to the

SUT to provide feedback to the sentence generation.

Test Case Selection and Prioritization. Test prioritization

strategies assign priorities to test cases in a test suite to

determine the order of execution of each test case; high priority

tests get preference. These strategies employ different criteria

(e.g., coverage, time, cost, etc) to ensure orderings that achieve

certain requirements. See [28, 29, 30] for detailed overviews.

Test case selection and prioritization techniques are usually

applied during regression testing [31], which is a quality

assurance activity that provides confidence that code changes

and the resulting evolution steps do not break the current

functionality of the system. The goal of regression testing is

to uncover behavioural changes from one software version to

the next. These changes are known as regressions. Since test

suites grow during the evolution of software systems, large

projects cannot re-run the complete test suite for every system

build. As a result, the goal of a search process is to minimise

the test suite [32, 9], select the most suitable test cases [33],

or to prioritize the test cases [2, 3, 4, 5, 6, 7, 8, 9] with the

aim of having higher chances to uncover regression errors in

a limited testing time budget [31].

As used in other empirical studies [4, 34] , we evaluate the

efficiency of our test case prioritization strategies using the

standard average percentage of fault detected (APFD). Higher

APFD indicates better fault detection rate. It is typically

computed as

APFD = 1−
∑m

i=1 Fi(w)

m× |TS | +
1

2× |TS |
where Fi(w) is the function that returns the index of the first

test case w ∈ TS that detects fault i, m is the total number

of faults detectable under TS , and |TS | denotes the size of

the test suite TS .

We also evaluate the effectiveness of of each strategy, by

computing the number Tmax of tests in TS it takes to find all

detectable faults.

III. TEST CASE PRIORITIZATION STRATEGIES

In this section, we propose four different grammar-based

test case prioritization strategies. We use the grammar and

test suite shown in Figure 1 to illustrate these strategies.

We consider each top-level alternative as a separate rule,

so that rule 4 refers to block → { stmts } and not to

decl → var id: type . Table I shows the size of each of

the rule tests, as well as the actually used rules.

Random Ordering. As baseline for our evaluation, we use a

simple random ordering of the the test cases.

152

prog → program id= block .
block → { decls stmts } |{ decls } | { stmts } |{}
decls → decl ; decls | decl ;
decl → var id: type
type → bool | int
stmts → stmt ; stmts | stmt ;
stmt → sleep

| if expr then stmt
| if expr then stmt else stmt
| while expr do stmt
| id= expr
| block

expr → expr = expr | expr + expr | (expr) | id | num
1 program x = {x = (x);}.
2 program x = {x = x + x;}.
3 program x = {x = x;}.
4 program x = {x = x = x;}.
5 program x = {x = 0;}.
6 program x = {if x then sleep;}.
7 program x = {if x then sleep else sleep;}.
8 program x = {sleep; sleep;}.
9 program x = {sleep;}.

10 program x = {var x:bool; sleep;}.
11 program x = {var x:bool; var x bool;}.
12 program x = {var x:bool;}.
13 program x = {var x:int;}.
14 program x = {while x do sleep;}.
15 program x = {{};}.
16 program x = {}.

Fig. 1: An example grammar GToy (top) and its corresponding

rule coverage test suite (bottom).

test size used rules
1 12 {1, 4, 12, 16, 21, 22}
2 12 {1, 4, 12, 16, 20, 22}
3 10 {1, 4, 12, 16, 22}
4 12 {1, 4, 12, 16, 19, 22}
5 10 {1, 4, 12, 16, 23}
6 11 {1, 4, 12, 13, 17, 22}
7 13 {1, 4, 12, 14, 17, 22}
8 10 {1, 4, 11, 12, 17}
9 8 {1, 4, 12, 17}

10 13 {1, 2, 7, 8, 9, 12, 17}
11 16 {1, 3, 6, 7, 8, 9}
12 11 {1, 3, 7, 8, 9}
13 11 {1, 3, 7, 8, 10}
14 11 {1, 4, 12, 15, 17, 22}
15 9 {1, 4, 5, 12, 18}
16 6 {1, 5}

TABLE I: Derivation data for rule test suite shown in Figure 1.

Size is measured in tokens.

Test Size. Smaller test cases (e.g., #16, #15, and #9) are

better for fault localization because they typically execute

a smaller part of the SUT, but on the other hand, larger

test cases (#7, #10, and #11) are better for fault detection,

because they (presumably) execute a larger part of the SUT.

We therefore order the test suite in decreasing size of the

test cases, measured in the number of tokens, and resolve ties

randomly.

Rule Novelty. The central tenet of grammar-based testing is

that test cases derived using different combinations of rules

exercise different parts of the SUT. We can try to maximize

this diversity by prioritizing test cases that use rules not yet

covered by test cases executed earlier. This process is started

with one of the test cases using the highest number of rules.

In our example, we first pick test case #10, which uses the

rules 1, 2, 7, 8, 9, 12, and 17, although it was originally derived

only to target rule 2; note also that this is not the largest test

measured by the number of tokens. Test cases #1, #2, and #4

then all use four yet uncovered rules; we randomly pick #1,

which covers rules 4, 16, 21, and 22. Test cases #11 and #15

then cover rules 3 and 6 resp. 5 and 18. Finally, test cases

#2, #4, #5, #6, #7, #8, #13, and #14 each covers one of the

remaining rules. The remaining four test cases (#3, #9, #12,

and #16) do not use any uncovered rules; we could therefore

drop them to achieve a test suite reduction, or simply execute

them in any random order.

Rule Rarity. We can exploit the central tenet of grammar-

based testing in a different way, by prioritizing test cases that

use “rare” rules, i.e., rules that are only used in the derivations

of very few test cases. In the extreme, we should execute test

cases first that use a rule not used by any other test case—if

the SUT contains an error related to such a rule, those test

cases are the only ones that can possibly identify it.

Given a test case w ∈ TS with used rules Rw we define the

rule occurrence vector r(w) ∈ {0, 1}|P | such that ri(w) = 1
iff pi ∈ Rw. Each component ri thus that indicates whether pi
is used in the derivation of w or not. From the rule occurrence

vectors we define the rule probability vector p(TS) for a test

suite TS such that p = (Σw∈TS r(w)) / |TS | (where Σ is

repeated vector addition). Each component pi thus describes

the fraction of test cases in which the rule pi has been

used during the construction of TS . In our example, we

get p1 = 1.0 (because every derivation starts with the rule

prog → program id= block .) but p2 = 0.0625 (because

only test case #10 contains both declarations and statements.

We can then define two different TCP strategies.

Rarest rule: We rearrange the test suite in ascending order

of the lowest probability of the rules used in the derivation of

each test case, i.e., we prioritize tests that use the rarest rules.

We can formalize this order by computing for each test case

w the score

‖(1− p(w)) � r(w)‖∞
where the Hadamard product z = x � y is the component-

wise multiplication of x and y, i.e., zi = xi yi, and the max

norm ‖x‖∞ is (the absolute value of) the largest component

of a vector x. Note that we are using 1 − p(w) because we

want to maximize rarity, and that the Hadamard product with

r(w) “projects out” rules that are not used by w.

In our example, 12 out of the 16 test cases exclusively

use one rule each; this is not surprising because the test

suite has been constructed to satisfy rule coverage with the

smallest possible test cases, but it means that this strategy can

degenerate into a version of random ordering that is biased

against large tests.

153

TS |TS | #killed |w| s2 |R| s2

cderiv 792 4763 13.15 4.44 21.9 3.61
random12 1000 4965 63.45 44.82 39.10 17.10
random20 1000 4965 145.25 146.49 46.44 22.27

TABLE II: Characteristics of test suites used in our evaluation.

|TS | is the size of each individual test suite. Note that for

random tests suites, we generate five instances of 1000 tests

each. #killed denotes the total number of faults found by each

test suite. |w| and |R| denote the average number of tokens

and rules used, respectively, and s2 are the respective sample

variances.

Rarest average rule: We can alternatively rearrange the test

suite by the average rarity of the rules used by each test case.

We can achieve this by changing from the max norm to the

standard Euclidean norm ‖·‖2, and re-normalizing this by the

norm of the occurrence vector, to prevent bias towards tests

that use only few rules. Hence, we compute for each test case

w the score

‖(1− p(w))� r(w)‖2 / ‖r(w)‖2
IV. EVALUATION

Experimental Setup. For our experiments, we used a gram-

mar for a small language called SIMPL as our base grammar.

SIMPL is used in the second year computer architecture

course at Stellenbosch University to introduce students to low

level programming concepts such as memory management,

intermediate code representation, code generation, etc. This

base grammar has 41 non-terminals, 43 terminals, and 83 rules

or productions.

We then derived an equivalent CUP grammar from the base

grammar. CUP is a popular parser generator that implements

the LALR parsing algorithm and emits parsers written in Java.

We mutated the CUP grammar by applying simple string edit

operations (i.e., deletion, insertion, and substitution) on the

right-hand side of every production. This gave us a total of

33300 grammars from which we randomly selected 5000.

We then generated parsers for each of the selected mutated

grammars.

We executed each parser derived from mutated grammars

over test suites generated from the base grammar. The first

test suite cderiv (see Section II for details) contains 792

positive test cases. The last two sets of test suites are randomly

generated with depth 12 and 20. We denote these by random12

and random20. The maximum acyclic derivation length in our

base grammar is 12, so the random12 test suite ensures that

every grammar symbol X ∈ V can occur in the derivation of a

test case. We also wanted to see the effect of longer and deeper

derivations with random20. Note that, to account for random

effects, we generate five sets for each random test suite of the

size of 1000 each. Table II contains more characteristics of the

test suites used to evaluate our test case ordering approaches.

Although some strategies such as size, rarest rule, and

rarest rule average are deterministic by construction, they

are not from free from tie manifestations. We resolve these

ties randomly, and therefore run five repetitions of each test

ordering strategy over our subject parsers.

We measure the rate at which test executions ordered by dif-

ferent strategies find faults, i.e., kill the mutants in our subject

parsers. A good strategy finds all (detectable) faults faster than

a random ordering. However, in our evaluation, not all faults

are detectable, i.e., not all mutants are killed by the test suites,

largely because of weaknesses in the test suites, equivalent

mutations, or execution time-outs on unstable parsers whose

underlying mutations introduced parsing conflicts.

Experimental Results. Figures 2 to 4 summarize our results

in a series of plots. Each plot shows the rate at which faults

are found by the different TCP strategies, given a specific

test suite. The top resp. bottom curve in each plot shows

the highest resp. lowest number of faults found after i test

executions across five repetition runs, while the dark blue

curve in the middle shows the average number of faults

found in these five runs. In each figure, the bottom right plot

shows the comparison of five test selection strategies using the

average number of faults found. Table III contains additional

details.

While the details change with different test suites and

strategies, the plots show overall positive results. First we

observe that, for the shorter systematically generated tests,

the rarest rule strategy has the highest APFD (∼87%) and

achieves the maximum kill rate much quicker than all other

strategies, i.e., with this strategy, we only need to execute about

14% of tests to find all faults. The rule novelty strategy finds

most faults faster than random but struggles to find the last

faults, and barely outperforms random in terms of AFPD. size
and rarest rule average show a worse AFPD performance than

random, although size finds the last fault faster.

Second, for the longer and and more complex derivations in

both random12 and random20 test suites, the results become

better (both in terms of AFPD and number of tests required

to kill all mutants) but also less discriminatory, as all the

strategies find all killable mutants within fewer than 10% of

the total test executions. This is possibly a consequence of the

(small) size of our base grammar. Running the largest tests

first (i.e., size) finds (the presence of) faults fastest, provided

the tests are large enough, but unfortunately this does not help

with finding the location of these faults.

Third, we see that the random strategy has the largest

variance across the board, while the rarest average rule
strategy shows less variance in both random12 and random20.

Overall we see that the random and (in some cases) rarest
average rule strategies perform relatively poorly, that the

rarest rule strategy outperforms all other strategies in terms of

APFD and Tmax scores, that the rule novelty strategy by and

large finds faults the fastest, and that size is effective only for

complex test cases.

V. THREATS TO VALIDITY

The main threats to validity can be attributed to our evalu-

ation, In particular, we only considered SUTs derived from a

single grammar that describes a small teaching language, and

154

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000
Nu

m
be

r o
f f

au
lts

 fo
un

d

(a) Random.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(b) Size.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(c) Rule novelty.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(d) Rarest.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(e) Rarest average.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

random
size
novel
rare
rare_avg

(f) Summary.

Fig. 2: A summary of results of different test case ordering over cderiv.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(a) Random.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(b) Size.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000
Nu

m
be

r o
f f

au
lts

 fo
un

d

(c) Rule novelty.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(d) Rarest.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(e) Rarest average.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

random
size
novel
rare
rare_avg

(f) Summary.

Fig. 3: A summary of results of different test orderings over five instances of random tests at k=12.

155

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000
Nu

m
be

r o
f f

au
lts

 fo
un

d

(a) Random.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(b) Size.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(c) Rule novelty.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(d) Rarest.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

(e) Rarest average.

100 101 102 103

Number of tests executed

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
au

lts
 fo

un
d

random
size
novel
rare
rare_avg

(f) Summary.

Fig. 4: A summary of results of different test orderings over five instances of random tests at k=20.

cderiv random12 random20

Tmax APFD Tmax APFD Tmax APFD
random 598.80 63.84 61.20 92.69 28.54 96.55
size 554.17 59.00 90.00 89.61 8.06 99.05
rule novelty 630.20 65.82 52.44 93.80 19.68 97.63
rarest 115.83 86.97 38.50 95.37 9.58 98.86
rarest average 674.00 59.09 14.40 98.27 46.68 94.44

TABLE III: Effectiveness results of each strategy under

different test suites using APFD and Tmax . Tmax denotes the

average number of tests executed until all killable mutants by

different test suites are killed by different test case selection

strategies.

we only considered injected faults. Our results may therefore

not generalize to other SUTs. However, note that fault seeding

is widely used in software testing research because it produces

many faulty subjects; it is particularly useful when benchmarks

with real faults are unavailable. Whether mutants are a good

substitute for real faults remains unclear in different testing

scenarios, but experiments show a positive correlation between

mutant detection and real fault detection [35]. Furthermore,

mutation testing has a long history in software testing, specif-

ically, test prioritization studies evaluate their strategies using

mutated program versions from the popular Siemens Suite

benchmark.

The mutations used in our evaluation are generated by

mutating production rules of the base grammar, however,

our conclusions should in principle also hold for code-level

mutations of the parser derived from the base grammar.

Our evaluation judgements on the effectiveness of our

proposed strategies are based on APFD and the number of test

executions required to find the last fault. Other studies, e.g.,

[29], propose coverage-based metrics to evaluate prioritization

strategies. We, however, leave their consideration and compar-

ison of our own prioritization strategies to different existing

ones for future work.

We mitigated against the usual human-induced threats by

carefully testing our scripts and using well-established tools

for generating test suites.

VI. CONCLUSIONS AND FUTURE WORK

Conclusions. In this paper, we described and compared five

static test case selection strategies specifically designed for

grammar-based testing. Our preliminary results show that the

cheap random ordering performs worse than the other four

under different test suites. The other baseline strategy which

is based on the size of the test suite only ever works well if

the underlying test suite contains long tests. The strategy based

on rule novelty runs stable across different scenarios; it finds

faults much faster across all three test suites, but struggles

to find the last fault. Overall, however, we achieved the best

results with the rarest rule strategy.

Future Work. In addition to conducting more experimental

evaluation under different fault models and test suites, we see

further interesting directions for future work. First, we plan

to design coverage-based strategies to compare effect on SUT

rather than mutant kill rates. Second, our results from the rule
novelty based strategy are promising, we plan to build on this

idea and develop and evaluate a much richer strategy based

on novel rule pairs; considering rule pairs will improve on

156

the short-comings of rule novelty. Finally, we plan to transfer

ideas from Ledru et al. [34] to the grammar-based context, and

pick the test next that has the biggest string edit distance from

those run so far. We plan to lift their character-based strategy

to the grammar’s tokens.

REFERENCES

[1] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and

understanding bugs in c compilers,” in Proceedings of
the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’11.

New York, NY, USA: ACM, 2011, pp. 283–294.

[2] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing junit

test cases: An empirical assessment and cost-benefits

analysis,” Empirical Software Engineering, vol. 11, no. 1,

pp. 33–70, 2006.

[3] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The

effects of time constraints on test case prioritization: A

series of controlled experiments,” IEEE Trans. Software
Eng., vol. 36, no. 5, pp. 593–617, 2010.

[4] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel,

“Test case prioritization: A family of empirical studies,”

IEEE Trans. Software Eng., vol. 28, no. 2, pp. 159–182,

2002.

[5] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Model-

based test prioritization heuristic methods and their eval-

uation,” in 3rd Workshop on Advances in Model Based
Testing, A-MOST 2007. ACM, 2007, pp. 34–43.

[6] Z. Li, M. Harman, and R. M. Hierons, “Search al-

gorithms for regression test case prioritization,” IEEE
Trans. Software Eng., vol. 33, no. 4, pp. 225–237, 2007.

[7] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou,

and L. Zhang, “How does regression test prioritization

perform in real-world software evolution?” in Int. Conf.
on Software Engineering, 2016.

[8] A. Marchetto, M. Islam, W. Asghar, A. Susi, and

G. Scanniello, “A multi-objective technique to prioritize

test cases,” IEEE Trans. Software Eng., vol. online first,

no. accepted, 2016.

[9] A. Shi, T. Yung, A. Gyori, and D. Marinov, “Comparing

and combining test-suite reduction and regression test

selection,” in Foundations of Software Engineering, ES-
EC/FSE 2015. ACM, 2015, pp. 237–247.

[10] B. Korel, L. H. Tahat, and M. Harman, “Test

prioritization using system models,” in 21st IEEE In-
ternational Conference on Software Maintenance (ICSM
2005), 25-30 September 2005, Budapest, Hungary.

IEEE Computer Society, 2005, pp. 559–568. [Online].

Available: https://doi.org/10.1109/ICSM.2005.87

[11] L. H. Tahat, B. Korel, M. Harman, and H. Ural,

“Regression test suite prioritization using system

models,” Softw. Test. Verification Reliab., vol. 22,

no. 7, pp. 481–506, 2012. [Online]. Available:

https://doi.org/10.1002/stvr.461

[12] B. Korel and G. Koutsogiannakis, “Experimental

comparison of code-based and model-based test

prioritization,” in Second International Conference
on Software Testing Verification and Validation,
ICST 2009, Denver, Colorado, USA, April 1-
4, 2009, Workshops Proceedings. IEEE Computer

Society, 2009, pp. 77–84. [Online]. Available:

https://doi.org/10.1109/ICSTW.2009.45

[13] L. Tahat, B. Korel, G. Koutsogiannakis, and

N. Almasri, “State-based models in regression

test suite prioritization,” Softw. Qual. J., vol. 25,

no. 3, pp. 703–742, 2017. [Online]. Available:

https://doi.org/10.1007/s11219-016-9330-x

[14] M. Raselimo, J. Taljaard, and B. Fischer, “Breaking

parsers: mutation-based generation of programs with

guaranteed syntax errors,” in Proceedings of the 12th
ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2019, Athens, Greece,
October 20-22, 2019, O. Nierstrasz, J. Gray, and B. C.

d. S. Oliveira, Eds. ACM, 2019, pp. 83–87. [Online].

Available: https://doi.org/10.1145/3357766.3359542

[15] S. V. Zelenov and S. A. Zelenova, “Automated generation

of positive and negative tests for parsers,” in Formal
Approaches to Software Testing, 5th International
Workshop, FATES 2005, Edinburgh, UK, July 11,
2005, Revised Selected Papers, ser. Lecture Notes in

Computer Science, W. Grieskamp and C. Weise, Eds.,

vol. 3997. Springer, 2005, pp. 187–202. [Online].

Available: https://doi.org/10.1007/11759744 13

[16] R. Lämmel, “Grammar testing,” in Fundamental
Approaches to Software Engineering, 4th International
Conference, FASE 2001 Held as Part of the Joint
European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001,
Proceedings, ser. Lecture Notes in Computer Science,

H. Hußmann, Ed., vol. 2029. Springer, 2001, pp.

201–216. [Online]. Available: https://doi.org/10.1007/3-

540-45314-8 15

[17] P. van Heerden, M. Raselimo, K. Sagonas, and

B. Fischer, “Grammar-based testing for little languages:

an experience report with student compilers,” in

Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering, SLE
2020, Virtual Event, USA, November 16-17, 2020,

R. Lämmel, L. Tratt, and J. de Lara, Eds.

ACM, 2020, pp. 253–269. [Online]. Available:

https://doi.org/10.1145/3426425.3426946

[18] B. Fischer, R. Lämmel, and V. Zaytsev, “Comparison

of context-free grammars based on parsing generated

test data,” in Software Language Engineering - 4th
International Conference, SLE 2011, Braga, Portugal,
July 3-4, 2011, Revised Selected Papers, ser. Lecture

Notes in Computer Science, A. M. Sloane and

U. Aßmann, Eds., vol. 6940. Springer, 2011, pp. 324–

343. [Online]. Available: https://doi.org/10.1007/978-3-

642-28830-2 18

[19] P. Purdom, “A sentence generator for testing

parsers,” BIT Numerical Mathematics, vol. 12,

157

pp. 366–375, Sep. 1972. [Online]. Available:

https://doi.org/10.1007/BF01932308

[20] N. Havrikov and A. Zeller, “Systematically covering

input structure,” in 34th IEEE/ACM International
Conference on Automated Software Engineering,
ASE 2019, San Diego, CA, USA, November 11-15,
2019. IEEE, 2019, pp. 189–199. [Online]. Available:

https://doi.org/10.1109/ASE.2019.00027

[21] S. V. Zelenov and S. A. Zelenova, “Generation of positive

and negative tests for parsers,” Program. Comput. Softw.,
vol. 31, no. 6, pp. 310–320, 2005. [Online]. Available:

https://doi.org/10.1007/s11086-005-0040-6

[22] C. Rossouw and B. Fischer, “Test case generation

from context-free grammars using generalized traversal

of lr-automata,” in Proceedings of the 13th ACM
SIGPLAN International Conference on Software
Language Engineering, SLE 2020, Virtual Event,
USA, November 16-17, 2020, R. Lämmel, L. Tratt, and

J. de Lara, Eds. ACM, 2020, pp. 133–139. [Online].

Available: https://doi.org/10.1145/3426425.3426938

[23] R. Lämmel and W. Schulte, “Controllable combinatorial

coverage in grammar-based testing,” in Testing
of Communicating Systems, 18th IFIP TC6/WG6.1
International Conference, TestCom 2006, New York, NY,
USA, May 16-18, 2006, Proceedings, ser. Lecture Notes

in Computer Science, M. Ü. Uyar, A. Y. Duale, and

M. A. Fecko, Eds., vol. 3964. Springer, 2006, pp. 19–38.

[Online]. Available: https://doi.org/10.1007/11754008 2

[24] C. Holler, K. Herzig, and A. Zeller, “Fuzzing

with code fragments,” in Proceedings of the 21th
USENIX Security Symposium, Bellevue, WA, USA,
August 8-10, 2012, T. Kohno, Ed. USENIX

Association, 2012, pp. 445–458. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity12/technical-

sessions/presentation/holler

[25] S. Veggalam, S. Rawat, I. Haller, and H. Bos,

“Ifuzzer: An evolutionary interpreter fuzzer using

genetic programming,” in Computer Security - ESORICS
2016 - 21st European Symposium on Research in
Computer Security, Heraklion, Greece, September 26-
30, 2016, Proceedings, Part I, ser. Lecture Notes in

Computer Science, I. G. Askoxylakis, S. Ioannidis,

S. K. Katsikas, and C. A. Meadows, Eds., vol. 9878.

Springer, 2016, pp. 581–601. [Online]. Available:

https://doi.org/10.1007/978-3-319-45744-4 29

[26] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire:

Data-driven seed generation for fuzzing,” in 2017 IEEE
Symposium on Security and Privacy, SP 2017, San

Jose, CA, USA, May 22-26, 2017. IEEE Computer

Society, 2017, pp. 579–594. [Online]. Available:

https://doi.org/10.1109/SP.2017.23

[27] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig,

A. Sadeghi, and D. Teuchert, “NAUTILUS: fishing

for deep bugs with grammars,” in 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 2019. [On-

line]. Available: https://www.ndss-symposium.org/ndss-

paper/nautilus-fishing-for-deep-bugs-with-grammars/

[28] R. Mukherjee and K. S. Patnaik, “A survey on

different approaches for software test case prioritization,”

J. King Saud Univ. Comput. Inf. Sci., vol. 33,

no. 9, pp. 1041–1054, 2021. [Online]. Available:

https://doi.org/10.1016/j.jksuci.2018.09.005

[29] Z. Li, M. Harman, and R. M. Hierons, “Search

algorithms for regression test case prioritization,” IEEE
Trans. Software Eng., vol. 33, no. 4, pp. 225–237, 2007.

[Online]. Available: https://doi.org/10.1109/TSE.2007.38

[30] H. Singh, L. Singh, and S. Tiwari, “A systematic

literature review on test case prioritization techniques,”

Int. J. Softw. Innov., vol. 10, no. 1, pp. 1–36, 2022.

[Online]. Available: https://doi.org/10.4018/ijsi.312263

[31] S. Yoo and M. Harman, “Regression testing minimiza-

tion, selection and prioritization: a survey,” Softw. Test.,
Verif. Reliab., vol. 22, no. 2, pp. 67–120, 2012.

[32] G. Rothermel, S. G. Elbaum, A. G. Malishevsky,

P. Kallakuri, and X. Qiu, “On test suite composition and

cost-effective regression testing,” ACM Trans. Softw. Eng.
Methodol., vol. 13, no. 3, pp. 277–331, 2004.

[33] S. Yoo and M. Harman, “Pareto efficient multi-objective

test case selection,” in ACM/SIGSOFT International Sym-
posium on Software Testing and Analysis, ISSTA 2007.

ACM, 2007, pp. 140–150.

[34] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran,

“Prioritizing test cases with string distances,” Autom.
Softw. Eng., vol. 19, no. 1, pp. 65–95, 2012. [Online].

Available: https://doi.org/10.1007/s10515-011-0093-0

[35] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,

R. Holmes, and G. Fraser, “Are mutants a valid

substitute for real faults in software testing?” in

Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
(FSE-22), Hong Kong, China, November 16 - 22,
2014, S. Cheung, A. Orso, and M. D. Storey,

Eds. ACM, 2014, pp. 654–665. [Online]. Available:

https://doi.org/10.1145/2635868.2635929

158

