Fu(t|z)zing with Grammars

Moeketsi Raselimo

raselimm@hu-berlin.de
(joint work with Jan Taljaard and Bernd Fischer)

Grammar-Based Testing S

Test suite construction: [test suite 7S < L(G)

prog — module prio id = block . H module[1] x = begin begin end; end.
orio — [num] sentence generation moduTel2] ¥ = begin end.
. . « module[3] z = begin x = (y); end.
block — begin (decl ;)" (stmt ;)" end module[1] z = begin x = x + y; end.
i - module[2] x = begin y = z; end.
decl — varid ..type module[3] z = begin x = z = y; end.
type — bool | int module[1] y = begin y = 1; end.
stmt — if exprthen stmt (else stmt)? | module[2] y = begin if x then begin end; end.
.) module[3] y = begin var x : bool; end.
while exprdo stmt | id= expr | block module[2] z = beg‘!n var z : int; er_1d.
expr — expr= expr | expr+exj.y\(expr) | id | num module[1l] x = begin while x do begin end; end.

[grammar G] \ /—

execution
Testing: [w /—]
A8

e some test fails = L(G) € L(U)
— since TS € L(G)

« (all) tests pass = L(G) = L(U)?

 whatif L(G) € L(U)?

— U can never fail on TS! mtundertest U]

Systematic construction
of positive test suites

(all) tests pass = L(G) = L(U)?

Grammar-Based Testing Assumptions S

Key assumption #1: Bigger is Better

[Better input space coverage gives better system coverage.]

Corollary #1: Longer is Better

[Longer derivations give better input space coverage.]

Corollary #2: Harder is Better

[More complex derivations give better input space coverage.]

Problem: Size Matters...

[We need to balance test suite size and system coverage.]

Grammar-Based Test Suite Adequacy S

When is good enough good enough?

Define different test data adequacy criteria in terms of
grammar elements and derivations.

Compare to traditional program coverage criteria:

statement coverage
(each statement is executed)

branch coverage
(each branch is taken)

MCDC coverage

(each sub-condition is independently
evaluated to true and false)

?7?7°?

symbol coverage
(each symbol is used in a derivation)

rule coverage
(each rule is used in a derivation)

CDRC coverage

(each rule’s rhs is used at each occur-
rence of its Ihs in the rhs of other rules)

k-step coverage
(each derivation X =! aYw (I < k)
is used to produce a word)

A Family of Grammar-Based Test Suite S
Adequacy Criteria
Assume: grammar G=(N,T,P,S), V=NUT, test suite TSCL(G).

Symbol: A word w covers a symbol S
XeViff S =*aXw =*w. U
TS satisfies symbol coverage iff each aXZ) XeV
X is covered by aword weTS. U
a,...a,

A Family of Grammar-Based Test Suite S
Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=NUT, test suite TSCL(G).

Symbol: A word w covers a symbol S
XeViff S =* aXw =" w. B
TS satisfies symbol coverage iff each o
X is covered by a word w €TS. —
Rule: Aword wcoversarulep=A—-yeP S
iff S =" aAw = ayw =>* w. U,
TS satisfies rule coverage iff each p is aQAw A—yeP
covered by aword weTS. U

ayw

U,
a;...a,

A Family of Grammar-Based Test Suite S
Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=NUT, test suite TSCL(G).

CDRC: context-dependent rule S
coverage requires that each non- U
terminal B on the right-hand side aAZ) A— BBS€EP
of arule A — BBd € P is expanded U
with eachrule B— y € P. aBBow B>yeP
U
aByow
U,
a...a,

A Family of Grammar-Based Test Suite S
Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=NUT, test suite TSCL(G).

CDRC: context-dependent rule S
coverage requires that each non- U*
terminal B on the right-hand side aAw A— BB EP
of arule A — BBd € P is expanded)
with eachrule B— y € P. aBBéw B — B'CSEP
k-step: each derivation X =' aYw N
(I < k) used to produce a word app ﬁé ow C—oVEeEP
a)%u XeV aﬁa A—yeP a,JilL A—BBSEP G,Bﬁ ’V5’5w
a, U* a, alylw aBlBl&u B—yeP U
" a l:: 2 aﬁﬁ&u a4 * d,

O-step 1-step 2-step 3-step

A Family of Grammar-Based Test Suite S
Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=NUT, test suite TSCL(G).

CDRC: context-dependent rule S
coverage requires that each non- U*
terminal B on the right-hand side aAw A— BB EP
of arule A — BBd € P is expanded)
with eachrule B— y € P. aBBéw B — B'CSEP
k-step: each derivation X =' aYw N
(I < k) used to produce a word app ﬁé ow C—oVEeEP
a)%u XeV aﬁa A—yeP a,JilL A—BBSEP G,Bﬁ ’V5’5w
a, U* a, alylw aBlBl&u B—yeP U
" a l:: 2 aﬁﬁ&u a4 * d,

symbol rule CDRC 3-step

Generic Cover Algorithm

cover(Crit,A,w):-

symbol1(A), % 1terate over symbols
derive(s,o,A,w), % find (minimal) embedding
call(Crit,A,B), % expand via Crit, can i1terate
append([«,B,w],VY),

yield(y,w). % find (minimal) yield

% coverage criteria for positive test suites
sym(A, [A]).
rule(A,y):- prod(A,y).
cdrc(A,y):- prod(A,o),
append([y, [B],5],a), prod(B,B),
append([y,B,8]1,v).

Generic Cover Algorithm

Algorithm 1: Generic cover algorithm

input : A CFG G=(N,T,P,S)
input : A coverage criterion C
input : A minimal derivation relation =
output: A test suite TS over G
TS < @
for X ¢V do
compute S =7 aXw
for /¢ C(X) do
compute abw =7 w
TS.add(w)
end

end
return 75

// coverage criteria
rule(X) ={a|X ->acP}

© W N o0 ok W N

= o=
= O

12 cdre(X) ={aw|X >aYwePY »>~eP}
13 stepr(X) 2 {aYw| X =FaYw, Y eV}
14 bfsp(X) 2{aYw|X =FaYw, Y eV}

=
[S)

deriv(X) ={aYw| X =S aYw,Y eV}
pll(X) ={aw|X =} aw,X € N,a ¢ first(X)}

=
=2}

A Family of Grammar-Based Test Suite S
Adequacy Criteria...and some odd cousins

CDRC?: A rule A — ais multiplied out if all non-terminals B; on
its right-hand side are simultaneously replaced by y; (for a rule
B; — vy; € P). Full context-dependent rule coverage requires
that rules are multiplied out using all rule combinations.

Deriv: A word w covers a derivable pair (X,Y) € Vx V iff

S =*aXw =*alBYyw =* w. TS satisfies derivable pair
coverage iff each pair (X,Y) with X<Y'is covered by a word

w TS and PLL coverage iff each pair (A,a) with a € first(A) is
covered by a word weTS.

Pair: A word w covers an adjacent pair (X,Y) € Vx V iff
S =*aXYw =*w. TS satisfies adjacent pair coverage iff each
pair (X,Y) with Y € follow(X) is covered by a word w €TS.

log N

Experimental Results - Coverage

Go (the programming language, that is):
« BNF: [N] =158, |T] =83, |P| =323
« evaluated over gcc-go v8.2.0, [gol;| = 31034

size of generated go test suite systematic coverage for go

i —o— default_tokens | 47.5 { —®— default_tokens |
11 - 45.0 1
10 4 __ .51
2
9 1 v 40.0
Al 2
8 / g 375
,‘\ ,’ S I’
] o A S et /
7 J \" 35.0 ¢
6 - ®
2.5
5-
30.0
R EEEEEEEEE R EEEEEE
E ° 8 ¥ ¥ Oy oL oLos 3 E 2 8B § o ¥ ¥ ¥
" n

Experimental Results - Bug finding S

Forced crash of gcc-go v8.2.0:
foo.go
package A; var A[A] A; J

O

$ gccgo-8.2 -c foo.go

gccgo-8.2: internal compiler error: Segmentation
fault signal terminated program gol

Please submit a full bug report,

with preprocessed source if appropriate.
See <https://gcc.gnu.org/bugs/> for instructions. [;;7
— ———

4 can recreate the compiler crash with GCC 8 branch, N

but it is fixed on trunk. On trunk | get
foo.go:3:7: error: array bound is not constant
3 | var A[A] A
| A
\jbo.go:3:7: error: expected type -/

Random Test Suite Generation | S

Basic algorithm:
start with the sentential forma =S
repeatedly pick a random non-terminal symbol A such that a = Ay
expand Awitharandomrule A—- 06 € P
continue untila =By € T*

Many variations:
 force termination
— replace remaining non-terminals by fixed yield

* repeated depth-first
— pick A € 9, if impossible randomly restart

» breadth-first
— start with 8 = ¢, pick A € vy, if impossible restart

Experimental Results - Bug finding

Forced crash of gcc-go v8.2.0:
foo.go

Q

package A; func(*A) A(Q); type A(*A); type(A A; A A;);VI

@ (Fixed on trunk by revision 270658. }
$ gccgo-8.2 -cC foo.gd““‘\~//” .

gol: internal compiler error: in func_value, at

go/gofrontend/gogo.h:2583

0x9dObfb Named_object::func_value()
../../gcc-8.2.0/gcc/go/gofrontend/gogo.h:2583
Oxb1a03d Type_declaration::define_methods(Named_type*)
../../gcc-8.2.0/gcc/go/gofrontend/gogo.cc:7099
[...]

Oxad4a71 go_langhook_parse_file
../../gcc-8.2.0/gcc/go/go-lang.c:329

Please submit a full bug report, with preprocessed
source if appropriate.

Please include the complete backtrace with any

bug report.

Systematic construction
of negative test suites

what if L(G) € L(U)?

Grammar-Based Testing

prog — module prio id = block . [Sentence g

prio — [num]

block — begin (decl ;)" (stmt ;)" end
decl — varid : type

type — bool | int

stmt — if exprthen stmt (else stmt)? |

while exprdo stmt | id = expr | block

eneration

)

expr — expr=expr | expr+ exjy\(expr) | id | num

[grammar G]

[test suite TS\Q;(Q] q

module[1l] x = begin begin end; end.
module[2] y = begin end.

module[3] z = begin x = (y); end.
module[1l] z = begin x = x + y; end.

module[2] x = begin y = z; end.

module[3] z = begin x Z = y; end.

module[l] y = beginy = 1; end.

module[2] y = begin if x then begin end; end.
module[3] y = begin var x : bool; end.
module[2] z = begin var z : int; end.
module[1l] x = begin while x do begin end; end.

Test suites with only positive test cases fail to find many errors:

 gratuitous optionals

prog — module prio? id = block .

» superfluous alternatives

type — bool | int | long

« unwarranted over-generalization

prio — ([epxr])
» order violations

decl —» varid(, id)" : type

block — begin((decl;) | (stmt;))" end

Mutation-Based Language Fuzzing S

Key observation #1

[If w=uabv and b ¢ follow(a), then w & L(G).]

Key observation #2
4

We can use this to identify locations for string editing
operations (insert, delete, substitute, transpose) that fuzz
\an existing positive test suite into a negative test suite.

Key observation #3

We can lift these ideas from tokens and words to symbols
and rules.

Basic Notations q

Poisoned pair (i.e., symbols that cannot be next to each other)
« (X)Y) € PP(G)iff X & precede(Y) or Y ¢ follow(X)

Left / right sets (i.e., terminals that can occur left / right to the
designated position in anitem A — aef for A — af € P)
(last(ex) U precede(A)) N T if a nullable
(last(ax) N'T otherwise

¢ left(A — aeff) = {

(first(B) U follow(A)) N T if B nullable

* right(A =
eh(A = asfp) {(ﬁrst(ﬁ))ﬂT otherwise

Word Mutation Operators S

Token deletion:
« uabcv € L(G), (a,c) € PP(G) = uacv ¢ L(G)

Token insertion:
* uacv € L(G), (a,d) €e PP(G) or (d,c) € PP(G) = uadcv ¢ L(G)

Token substitution:
* uabcv € L(G), (a,d) € PP(G) or (d,c) € PP(G) = uadcv & L(G)

Token transposition:

* uabcdv € L(G), (a,c) e PP(G) or (c,b) e PP(G) or (b,d) € PP(G)
= uacbdv & L(G)

Note: higher-order mutations are not guaranteed to produce
negative test cases.

Word Mutation Algorithm

module[2] x = begin y = z; end. - 21
o module 2]

module[]
module[2

" ho replacement by then,

foreach w € TS: else, do, + and = since
foreach /i in |W|: they do not produce a PP
\in remaining context ...

foreach operator m:
if pre,,(w,i)
then print m(w,i) [but do in context with =

2]

module[2]
module[2]

module[2]
module[2]
module[2]
module[2]
module[2]
module[2]

X = begin y = z; end.
X = begin y = z; end.
x = begin y = z; end.
x = begin y = z; end.

= begin y = z; end.

= begin y module z; end.
= beginy [z; end.

= beginy] z; end.

= begin y begin z; end.
= begin y end z; end.

= begin y var z; end.

= begin y : z; end.

X = begin y bool z; end.
X = begin y int z; end.

= begin y if z; end.

X = begin y while z; end.
x = begin y (z; end.

= begin y) z; end.

= begin y x z; end.

= begin y 0 z; end.

= beginy 0 = z; end.

= begin y then = z; end.
= begin y else = z; end.
= begin y do = z; end.

X = begin y = = z; end.

X = begin y module = z; end.

Rule Mutation Operators

Symbol deletion: Let p=A — geXB € P°. If

« follow(left(A — ae)) N right(A — aefB) =@, or
* left(A — aef) N precede(right(A — aef)) =
thenanyw & L(G) if S =" yAd w» yaffd =" w

Intuition:

S =* yAcSwm/\ /A\Q: w

Symbol insertion: Letp=A —> aeB € P*, Xe V. If

« follow(left(A — aeXf)) N right(A — aeXB) = @, or
* left(A — aeXB) N precede(right(A — aeXp)) =
thenany w ¢ L(G) if S =* yAd » yaXBd =* w

Experimental Results

« Simpl - small imperative language (like Ampl)
« student grammars, yacc encoding from given EBNF

« differential testing
— test cases generated from grammar, using cover algorithm
tested on golden parser

False negatives False positives
Grammar|| |N|||T|| | P| DL(edrc) DL(pll) totalpy || rule-mut || total |overlap||cdre pll DL(cdre)| DL(pll)| rule-mut
11 46| 47| 88]0.6||139331 (166)|1.0|136135 (50)|0.3|143049||8984 |3.3||144959| 78.7%||0 0 0 0 7
13 42| 45] 80]0.6]/138102 (171)|1.0/32505 (46)|0.5|141645(|8376|2.6||143625| 76.4%||17 1 0 0 6
15 64| 47|10710.9]182205 (223)[1.5|37097 (51)|0.3|185946(|8923|5.0|| 187809 79.1% ||47 3 0 0 5
17 471 471 9010.7]| 145761 (174)|1.4136609 (51)]0.2|149479{|9004 |3.3||151380| 78.9%]||15 3 0 0 6
19 46| 47| 88]0.6||116062 (139)(0.9|36135 (50)|0.3|119780||8984 |3.1/[121694| 78.7%||0 0 0 0 7
21 68| 47(110]0.8][139331 (166)|1.7|36135 (50)|0.2| 143049|{8984{5.1|/144959| 78.7%||0 0 0 0 7
23 731 47(115]0.8]/129130 (152)|1.1|36135 (50)|0.3| 1328498984 |5.9||134759| 78.7%||7 1 458 142 35
25 46| 47| 88]0.6||139331 (166)|1.0|136135 (50)|0.2|143049||8984 |3.3||144959| 78.7%||0 0 0 0 7
27 46| 47| 88]0.6||139331 (166)|1.0|136135 (50)|0.2|143049||8984 |3.1||144959| 78.7%||0 0 0 0 7
29 921 46(136]0.9]/ 115566 (141)[0.8|35227 (50)|0.2{119188({9344(8.2//121490| 75.4%||15 2 0 0 5
31 70| 471112]1.0]/139331 (166)|1.3|36135 (50)|0.3| 1430498984 |8.4||144959| 78.7% |0 0 0 0 7
33 47 47| 89]0.7||139331 (166)|1.7|36135 (50)|0.3|143049||8984 |3.5/144959| 78.7%||0 0 0 0 7

Conclusions

* Better grammar coverage gives better system coverage
— token construction mechanism makes large difference
— specialized criteria can outperform simple k-step for small k
 Random test suites outperform simple k-step for large k

* Negative test cases can be generated constructively
— number of edit-based mutants grows very large
— number of rule-based mutants remains reasonable
— mutations allow precise oracles (location / error type)

	Slide 1
	Slide 2: Grammar-Based Testing
	Slide 3
	Slide 4: Grammar-Based Testing Assumptions
	Slide 5: Grammar-Based Test Suite Adequacy
	Slide 6: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 7: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 8: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 9: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 10: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 11: Generic Cover Algorithm
	Slide 12: Generic Cover Algorithm
	Slide 13: A Family of Grammar-Based Test Suite Adequacy Criteria…and some odd cousins
	Slide 15: Experimental Results - Coverage
	Slide 16: Experimental Results - Bug finding
	Slide 17: Random Test Suite Generation
	Slide 18: Experimental Results - Bug finding
	Slide 19
	Slide 20: Grammar-Based Testing
	Slide 21: Mutation-Based Language Fuzzing
	Slide 22: Basic Notations
	Slide 23: Word Mutation Operators
	Slide 24: Word Mutation Algorithm
	Slide 25: Rule Mutation Operators
	Slide 26: Experimental Results
	Slide 27: Conclusions

