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Grammar-Based Testing

module[1] x = begin begin end; end.

module[2] y = begin end.
module[3] z = begin x = (y); end.

module[1] z = begin x = x + y; end.
module[2] x = begin y = z; end.
module[3] z = begin x = z = y; end.

module[1] y = begin y = 1; end.
module[2] y = begin if x then begin end; end.

module[3] y = begin var x : bool; end.
module[2] z = begin var z : int; end.
module[1] x = begin while x do begin end; end.

...

Test suite construction:

Testing:

• some test fails  L(G) ⊈ L(U)

– since TS ⊆ L(G)

• (all) tests pass  L(G) = L(U)?

• what if L(G) ⊆ L(U)?

– U can never fail on TS!

sentence generation

test suite TS ⊆ L(G)

grammar G

execution

… on unit under test U



Systematic construction

of positive test suites

(all) tests pass  L(G) = L(U)?



Grammar-Based Testing Assumptions

Key assumption #1: Bigger is Better

Corollary #1: Longer is Better

Corollary #2: Harder is Better

Problem: Size Matters…

Better input space coverage gives better system coverage.

Longer derivations give better input space coverage.

We need to balance test suite size and system coverage.

More complex derivations give better input space coverage.



Compare to traditional program coverage criteria:

• statement coverage  symbol coverage
(each statement is executed)  (each symbol is used in a derivation)

• branch coverage   rule coverage
(each branch is taken)   (each rule is used in a derivation)

• MCDC coverage   CDRC coverage
(each sub-condition is independently (each rule’s rhs is used at each occur-

 evaluated to true and false)   rence of its lhs in the rhs of other rules)

• ???     k-step coverage
     (each derivation X l αYω (l ≤ k)

      is used to produce a word)

Grammar-Based Test Suite Adequacy

When is good enough good enough?

Define different test data adequacy criteria in terms of 

grammar elements and derivations.



A Family of Grammar-Based Test Suite 

Adequacy Criteria 

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

Symbol: A word w covers a symbol

X∈V iff S ⇒∗ αXω ⇒∗ w. 

TS satisfies symbol coverage iff each

X is covered by a word w ∈TS.
X           X∈V

S

⇓
*

⇓
*a1 . . . an

w

α  ω



A Family of Grammar-Based Test Suite 

Adequacy Criteria 

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

Symbol: A word w covers a symbol

X∈V iff S ⇒∗ αXω ⇒∗ w. 

TS satisfies symbol coverage iff each

X is covered by a word w ∈TS.

Rule: A word w covers a rule p = A→γ ∈ P

iff S ⇒∗ αAω ⇒ αγω ⇒∗ w. 

TS satisfies rule coverage iff each p is

covered by a word w ∈TS.
A          A→γ ∈ P

S

⇓
*

⇓
*a1 . . . an

w

α  ω

⇓
αγω



A Family of Grammar-Based Test Suite 

Adequacy Criteria 

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

CDRC: context-dependent rule

coverage requires that each non-

terminal B on the right-hand side

of a rule A → βBδ ∈ P is expanded

with each rule B → γ ∈ P.

A         A → βBδ ∈ P

S

⇓
*

⇓
*a1 . . . an

w

α  ω

⇓

⇓
αβγδω

αβBδω         B → γ ∈ P



A Family of Grammar-Based Test Suite 

Adequacy Criteria 

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

CDRC: context-dependent rule

coverage requires that each non-

terminal B on the right-hand side

of a rule A → βBδ ∈ P is expanded

with each rule B → γ ∈ P.

k-step: each derivation X l αYω

(l ≤ k) used to produce a word

0-step          1-step               2-step                                3-step

A            A → βBδ ∈ P

S

⇓
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w
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⇓

⇓
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αβBδω     B → β’Cδ’ ∈ P

⇓
αββ’Cδ’δω        C → γ ∈ P



A Family of Grammar-Based Test Suite 

Adequacy Criteria 

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

CDRC: context-dependent rule

coverage requires that each non-

terminal B on the right-hand side

of a rule A → βBδ ∈ P is expanded

with each rule B → γ ∈ P.

k-step: each derivation X l αYω

(l ≤ k) used to produce a word

symbol           rule                CDRC                                3-step

A            A → βBδ ∈ P

S

⇓
*

⇓
*a1 . . . an

w

α  ω

⇓

⇓

αββ’γδ’δω

αβBδω     B → β’Cδ’ ∈ P

⇓
αββ’Cδ’δω        C → γ ∈ P



Generic Cover Algorithm

cover(Crit,A,W):-

  symbol(A),   % iterate over symbols

  derive(s,α,A,ω),  % find (minimal) embedding

  call(Crit,A,β),  % expand via Crit, can iterate

  append([α,β,ω],γ),

  yield(γ,W).   % find (minimal) yield

% coverage criteria for positive test suites

sym(A,[A]).

rule(A,γ):- prod(A,γ).

cdrc(A,γ):- prod(A,α),
            append([γ,[B],δ],α), prod(B,β),

            append([γ,β,δ],γ).



Generic Cover Algorithm



A Family of Grammar-Based Test Suite 

Adequacy Criteria…and some odd cousins

CDRC2: A rule A → α is multiplied out if all non-terminals Bi on 

its right-hand side are simultaneously replaced by γi (for a rule 

Bi → γi ∈ P). Full context-dependent rule coverage requires 

that rules are multiplied out using all rule combinations.

Deriv: A word w covers a derivable pair (X,Y) ∈ V x V iff

S ⇒∗ αXω ⇒∗ αßYψω ⇒∗ w. TS satisfies derivable pair 

coverage iff each pair (X,Y) with X≺Y is covered by a word

w ∈TS and PLL coverage iff each pair (A,a) with a ∈ first(A) is 

covered by a word w ∈TS.

Pair: A word w covers an adjacent pair (X,Y) ∈ V x V iff

S ⇒∗ αXYω ⇒∗ w. TS satisfies adjacent pair coverage iff each 

pair (X,Y) with Y ∈ follow(X) is covered by a word w ∈TS.



Experimental Results - Coverage

Go (the programming language, that is):

• BNF: |N| = 158, |T| = 83, |P| = 323

• evaluated over gcc-go v8.2.0, |go1C| = 31034



Forced crash of gcc-go v8.2.0:

Experimental Results - Bug finding

package A; var A[A] A;

foo.go

$ gccgo-8.2 -c foo.go
gccgo-8.2: internal compiler error: Segmentation 
fault signal terminated program go1
Please submit a full bug report,
with preprocessed source if appropriate.
See <https://gcc.gnu.org/bugs/> for instructions.

I can recreate the compiler crash with GCC 8 branch, 

but it is fixed on trunk. On trunk I get
foo.go:3:7: error: array bound is not constant

3 | var A[A] A

| ^

foo.go:3:7: error: expected type



Random Test Suite Generation

Basic algorithm:

  start with the sentential form α = S

    repeatedly pick a random non-terminal symbol A such that α = βAγ

    expand A with a random rule A → δ ∈ P

  continue until α = βδγ ∈ T*

Many variations:

• force termination

– replace remaining non-terminals by fixed yield

• repeated depth-first

– pick A ∈ δ, if impossible randomly restart

• breadth-first

– start with ß = ϵ, pick A ∈ γ, if impossible restart



Forced crash of gcc-go v8.2.0:

Experimental Results - Bug finding

package A; func(*A) A(); type A(*A); type(A A; A A;);

foo.go

$ gccgo-8.2 -c foo.go
go1: internal compiler error: in func_value, at 
go/gofrontend/gogo.h:2583
0x9d0bfb Named_object::func_value()
        ../../gcc-8.2.0/gcc/go/gofrontend/gogo.h:2583
0xb1a03d Type_declaration::define_methods(Named_type*)
        ../../gcc-8.2.0/gcc/go/gofrontend/gogo.cc:7099
[...]
0xad4a71 go_langhook_parse_file
        ../../gcc-8.2.0/gcc/go/go-lang.c:329

Please submit a full bug report, with preprocessed 
source if appropriate.
Please include the complete backtrace with any
bug report.

Fixed on trunk by revision 270658.

Fixed on trunk by revision 270658.
  



Systematic construction

of negative test suites

what if L(G) ⊆ L(U)?



Grammar-Based Testing
module[1] x = begin begin end; end.

module[2] y = begin end.
module[3] z = begin x = (y); end.

module[1] z = begin x = x + y; end.
module[2] x = begin y = z; end.
module[3] z = begin x = z = y; end.

module[1] y = begin y = 1; end.
module[2] y = begin if x then begin end; end.

module[3] y = begin var x : bool; end.
module[2] z = begin var z : int; end.
module[1] x = begin while x do begin end; end.

...

Test suites with only positive test cases fail to find many errors:

• gratuitous optionals

• superfluous alternatives 

• unwarranted over-generalization

• order violations

sentence generation

test suite TS ⊆ L(G)

grammar G



Mutation-Based Language Fuzzing

Key observation #1

Key observation #2

Key observation #3

If w = uabv and b ∉ follow(a), then w ∉ L(G).

We can lift these ideas from tokens and words to symbols 

and rules.

We can use this to identify locations for string editing 

operations (insert, delete, substitute, transpose) that fuzz 

an existing positive test suite into a negative test suite.



Basic Notations

Poisoned pair (i.e., symbols that cannot be next to each other)

• (X,Y) ∈ PP(G) iff X ∉ precede(Y) or Y ∉ follow(X) 

Left / right sets (i.e., terminals that can occur left / right to the 

designated position in an item A → α●β for A → αβ ∈ P)

•  

•  



Word Mutation Operators

Token deletion:

• uabcv ∈ L(G), (a,c) ∈ PP(G)  uacv ∉ L(G)

Token insertion:

• uacv ∈ L(G), (a,d) ∈ PP(G) or (d,c) ∈ PP(G)  uadcv ∉ L(G)

Token substitution:

• uabcv ∈ L(G), (a,d) ∈ PP(G) or (d,c) ∈ PP(G)  uadcv ∉ L(G)

Token transposition:

• uabcdv ∈ L(G), (a,c) ∈ PP(G) or (c,b) ∈ PP(G) or (b,d) ∈ PP(G) 

 uacbdv ∉ L(G)

Note: higher-order mutations are not guaranteed to produce      

negative test cases.



foreach w ∈ TS:

 foreach i in |w|:

  foreach operator m: 

   if prem(w,i) 

   then print m(w,i)

Word Mutation Algorithm

...

      [2] x = begin y = z; end.
module 2] x = begin y = z; end.

module[ ] x = begin y = z; end.
module[2  x = begin y = z; end.
module[2]   = begin y = z; end.

...
module[2] x = begin y module z; end.

module[2] x = begin y [ z; end.
module[2] x = begin y ] z; end.
module[2] x = begin y begin z; end.

module[2] x = begin y end z; end.
module[2] x = begin y var z; end.

module[2] x = begin y : z; end.
module[2] x = begin y bool z; end.
module[2] x = begin y int z; end.

module[2] x = begin y if z; end.
module[2] x = begin y while z; end.

module[2] x = begin y ( z; end.
module[2] x = begin y ) z; end.
module[2] x = begin y x z; end.

module[2] x = begin y 0 z; end.
...

module[2] x = begin y module = z; end.
...
module[2] x = begin y 0 = z; end.

module[2] x = begin y then = z; end.
module[2] x = begin y else = z; end.

module[2] x = begin y do = z; end.
module[2] x = begin y + = z; end.
module[2] x = begin y = = z; end.

...

...

module[2] x = begin y = z; end.
...

no replacement by then, 

else, do, + and = since 

they do not produce a PP 

in remaining context …

… but do in context with =



Rule Mutation Operators

Symbol deletion: Let p = A → α●Xβ ∈ P●. If

• follow(left(A → α●β)) ∩ right(A → α●β) = ∅, or

• left(A → α●β) ∩ precede(right(A → α●β)) = ∅

then any w ∉ L(G) if S * γAδ ⇝ γαβδ * w

Intuition:

 S * γAδ ⇝ γ α      β  δ  * w

Symbol insertion: Let p = A → α●β ∈ P●, X ∈ V. If

• follow(left(A → α●Xβ)) ∩ right(A → α●Xβ) = ∅, or

• left(A → α●Xβ) ∩ precede(right(A → α●Xβ)) = ∅

then any w ∉ L(G) if S * γAδ ⇝ γαXβδ * w



Experimental Results

• Simpl - small imperative language (like Ampl)

• student grammars, yacc encoding from given EBNF

• differential testing

– test cases generated from grammar, using cover algorithm

– tested on golden parser



Conclusions

• Better grammar coverage gives better system coverage

– token construction mechanism makes large difference

– specialized criteria can outperform simple k-step for small k

• Random test suites outperform simple k-step for large k

• Negative test cases can be generated constructively

– number of edit-based mutants grows very large

– number of rule-based mutants remains reasonable

– mutations allow precise oracles (location / error type)
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