
Moeketsi Raselimo

raselimm@hu-berlin.de
(joint work with Jan Taljaard and Bernd Fischer)

Fu(t|z)zing with Grammars

Grammar-Based Testing

module[1] x = begin begin end; end.

module[2] y = begin end.
module[3] z = begin x = (y); end.

module[1] z = begin x = x + y; end.
module[2] x = begin y = z; end.
module[3] z = begin x = z = y; end.

module[1] y = begin y = 1; end.
module[2] y = begin if x then begin end; end.

module[3] y = begin var x : bool; end.
module[2] z = begin var z : int; end.
module[1] x = begin while x do begin end; end.

...

Test suite construction:

Testing:

• some test fails  L(G) ⊈ L(U)

– since TS ⊆ L(G)

• (all) tests pass  L(G) = L(U)?

• what if L(G) ⊆ L(U)?

– U can never fail on TS!

sentence generation

test suite TS ⊆ L(G)

grammar G

execution

… on unit under test U

Systematic construction

of positive test suites

(all) tests pass  L(G) = L(U)?

Grammar-Based Testing Assumptions

Key assumption #1: Bigger is Better

Corollary #1: Longer is Better

Corollary #2: Harder is Better

Problem: Size Matters…

Better input space coverage gives better system coverage.

Longer derivations give better input space coverage.

We need to balance test suite size and system coverage.

More complex derivations give better input space coverage.

Compare to traditional program coverage criteria:

• statement coverage symbol coverage
(each statement is executed) (each symbol is used in a derivation)

• branch coverage rule coverage
(each branch is taken) (each rule is used in a derivation)

• MCDC coverage CDRC coverage
(each sub-condition is independently (each rule’s rhs is used at each occur-

 evaluated to true and false) rence of its lhs in the rhs of other rules)

• ??? k-step coverage
 (each derivation X l αYω (l ≤ k)

 is used to produce a word)

Grammar-Based Test Suite Adequacy

When is good enough good enough?

Define different test data adequacy criteria in terms of

grammar elements and derivations.

A Family of Grammar-Based Test Suite

Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

Symbol: A word w covers a symbol

X∈V iff S ⇒∗ αXω ⇒∗ w.

TS satisfies symbol coverage iff each

X is covered by a word w ∈TS.
X X∈V

S

⇓
*

⇓
*a1 . . . an

w

α ω

A Family of Grammar-Based Test Suite

Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

Symbol: A word w covers a symbol

X∈V iff S ⇒∗ αXω ⇒∗ w.

TS satisfies symbol coverage iff each

X is covered by a word w ∈TS.

Rule: A word w covers a rule p = A→γ ∈ P

iff S ⇒∗ αAω ⇒ αγω ⇒∗ w.

TS satisfies rule coverage iff each p is

covered by a word w ∈TS.
A A→γ ∈ P

S

⇓
*

⇓
*a1 . . . an

w

α ω

⇓
αγω

A Family of Grammar-Based Test Suite

Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

CDRC: context-dependent rule

coverage requires that each non-

terminal B on the right-hand side

of a rule A → βBδ ∈ P is expanded

with each rule B → γ ∈ P.

A A → βBδ ∈ P

S

⇓
*

⇓
*a1 . . . an

w

α ω

⇓

⇓
αβγδω

αβBδω B → γ ∈ P

A Family of Grammar-Based Test Suite

Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

CDRC: context-dependent rule

coverage requires that each non-

terminal B on the right-hand side

of a rule A → βBδ ∈ P is expanded

with each rule B → γ ∈ P.

k-step: each derivation X l αYω

(l ≤ k) used to produce a word

0-step 1-step 2-step 3-step

A A → βBδ ∈ P

S

⇓
*

⇓
*a1 . . . an

w

α ω

⇓

⇓

αββ’γδ’δω

αβBδω B → β’Cδ’ ∈ P

⇓
αββ’Cδ’δω C → γ ∈ P

A Family of Grammar-Based Test Suite

Adequacy Criteria

Assume: grammar G=(N,T,P,S), V=N ∪T, test suite TS ⊆ L(G).

CDRC: context-dependent rule

coverage requires that each non-

terminal B on the right-hand side

of a rule A → βBδ ∈ P is expanded

with each rule B → γ ∈ P.

k-step: each derivation X l αYω

(l ≤ k) used to produce a word

symbol rule CDRC 3-step

A A → βBδ ∈ P

S

⇓
*

⇓
*a1 . . . an

w

α ω

⇓

⇓

αββ’γδ’δω

αβBδω B → β’Cδ’ ∈ P

⇓
αββ’Cδ’δω C → γ ∈ P

Generic Cover Algorithm

cover(Crit,A,W):-

 symbol(A), % iterate over symbols

 derive(s,α,A,ω), % find (minimal) embedding

 call(Crit,A,β), % expand via Crit, can iterate

 append([α,β,ω],γ),

 yield(γ,W). % find (minimal) yield

% coverage criteria for positive test suites

sym(A,[A]).

rule(A,γ):- prod(A,γ).

cdrc(A,γ):- prod(A,α),
 append([γ,[B],δ],α), prod(B,β),

 append([γ,β,δ],γ).

Generic Cover Algorithm

A Family of Grammar-Based Test Suite

Adequacy Criteria…and some odd cousins

CDRC2: A rule A → α is multiplied out if all non-terminals Bi on

its right-hand side are simultaneously replaced by γi (for a rule

Bi → γi ∈ P). Full context-dependent rule coverage requires

that rules are multiplied out using all rule combinations.

Deriv: A word w covers a derivable pair (X,Y) ∈ V x V iff

S ⇒∗ αXω ⇒∗ αßYψω ⇒∗ w. TS satisfies derivable pair

coverage iff each pair (X,Y) with X≺Y is covered by a word

w ∈TS and PLL coverage iff each pair (A,a) with a ∈ first(A) is

covered by a word w ∈TS.

Pair: A word w covers an adjacent pair (X,Y) ∈ V x V iff

S ⇒∗ αXYω ⇒∗ w. TS satisfies adjacent pair coverage iff each

pair (X,Y) with Y ∈ follow(X) is covered by a word w ∈TS.

Experimental Results - Coverage

Go (the programming language, that is):

• BNF: |N| = 158, |T| = 83, |P| = 323

• evaluated over gcc-go v8.2.0, |go1C| = 31034

Forced crash of gcc-go v8.2.0:

Experimental Results - Bug finding

package A; var A[A] A;

foo.go

$ gccgo-8.2 -c foo.go
gccgo-8.2: internal compiler error: Segmentation
fault signal terminated program go1
Please submit a full bug report,
with preprocessed source if appropriate.
See <https://gcc.gnu.org/bugs/> for instructions.

I can recreate the compiler crash with GCC 8 branch,

but it is fixed on trunk. On trunk I get
foo.go:3:7: error: array bound is not constant

3 | var A[A] A

| ^

foo.go:3:7: error: expected type

Random Test Suite Generation

Basic algorithm:

 start with the sentential form α = S

 repeatedly pick a random non-terminal symbol A such that α = βAγ

 expand A with a random rule A → δ ∈ P

 continue until α = βδγ ∈ T*

Many variations:

• force termination

– replace remaining non-terminals by fixed yield

• repeated depth-first

– pick A ∈ δ, if impossible randomly restart

• breadth-first

– start with ß = ϵ, pick A ∈ γ, if impossible restart

Forced crash of gcc-go v8.2.0:

Experimental Results - Bug finding

package A; func(*A) A(); type A(*A); type(A A; A A;);

foo.go

$ gccgo-8.2 -c foo.go
go1: internal compiler error: in func_value, at
go/gofrontend/gogo.h:2583
0x9d0bfb Named_object::func_value()
 ../../gcc-8.2.0/gcc/go/gofrontend/gogo.h:2583
0xb1a03d Type_declaration::define_methods(Named_type*)
 ../../gcc-8.2.0/gcc/go/gofrontend/gogo.cc:7099
[...]
0xad4a71 go_langhook_parse_file
 ../../gcc-8.2.0/gcc/go/go-lang.c:329

Please submit a full bug report, with preprocessed
source if appropriate.
Please include the complete backtrace with any
bug report.

Fixed on trunk by revision 270658.

Fixed on trunk by revision 270658.

Systematic construction

of negative test suites

what if L(G) ⊆ L(U)?

Grammar-Based Testing
module[1] x = begin begin end; end.

module[2] y = begin end.
module[3] z = begin x = (y); end.

module[1] z = begin x = x + y; end.
module[2] x = begin y = z; end.
module[3] z = begin x = z = y; end.

module[1] y = begin y = 1; end.
module[2] y = begin if x then begin end; end.

module[3] y = begin var x : bool; end.
module[2] z = begin var z : int; end.
module[1] x = begin while x do begin end; end.

...

Test suites with only positive test cases fail to find many errors:

• gratuitous optionals

• superfluous alternatives

• unwarranted over-generalization

• order violations

sentence generation

test suite TS ⊆ L(G)

grammar G

Mutation-Based Language Fuzzing

Key observation #1

Key observation #2

Key observation #3

If w = uabv and b ∉ follow(a), then w ∉ L(G).

We can lift these ideas from tokens and words to symbols

and rules.

We can use this to identify locations for string editing

operations (insert, delete, substitute, transpose) that fuzz

an existing positive test suite into a negative test suite.

Basic Notations

Poisoned pair (i.e., symbols that cannot be next to each other)

• (X,Y) ∈ PP(G) iff X ∉ precede(Y) or Y ∉ follow(X)

Left / right sets (i.e., terminals that can occur left / right to the

designated position in an item A → α●β for A → αβ ∈ P)

•

•

Word Mutation Operators

Token deletion:

• uabcv ∈ L(G), (a,c) ∈ PP(G)  uacv ∉ L(G)

Token insertion:

• uacv ∈ L(G), (a,d) ∈ PP(G) or (d,c) ∈ PP(G)  uadcv ∉ L(G)

Token substitution:

• uabcv ∈ L(G), (a,d) ∈ PP(G) or (d,c) ∈ PP(G)  uadcv ∉ L(G)

Token transposition:

• uabcdv ∈ L(G), (a,c) ∈ PP(G) or (c,b) ∈ PP(G) or (b,d) ∈ PP(G)

 uacbdv ∉ L(G)

Note: higher-order mutations are not guaranteed to produce

negative test cases.

foreach w ∈ TS:

 foreach i in |w|:

 foreach operator m:

 if prem(w,i)

 then print m(w,i)

Word Mutation Algorithm

...

 [2] x = begin y = z; end.
module 2] x = begin y = z; end.

module[] x = begin y = z; end.
module[2 x = begin y = z; end.
module[2] = begin y = z; end.

...
module[2] x = begin y module z; end.

module[2] x = begin y [z; end.
module[2] x = begin y] z; end.
module[2] x = begin y begin z; end.

module[2] x = begin y end z; end.
module[2] x = begin y var z; end.

module[2] x = begin y : z; end.
module[2] x = begin y bool z; end.
module[2] x = begin y int z; end.

module[2] x = begin y if z; end.
module[2] x = begin y while z; end.

module[2] x = begin y (z; end.
module[2] x = begin y) z; end.
module[2] x = begin y x z; end.

module[2] x = begin y 0 z; end.
...

module[2] x = begin y module = z; end.
...
module[2] x = begin y 0 = z; end.

module[2] x = begin y then = z; end.
module[2] x = begin y else = z; end.

module[2] x = begin y do = z; end.
module[2] x = begin y + = z; end.
module[2] x = begin y = = z; end.

...

...

module[2] x = begin y = z; end.
...

no replacement by then,

else, do, + and = since

they do not produce a PP

in remaining context …

… but do in context with =

Rule Mutation Operators

Symbol deletion: Let p = A → α●Xβ ∈ P●. If

• follow(left(A → α●β)) ∩ right(A → α●β) = ∅, or

• left(A → α●β) ∩ precede(right(A → α●β)) = ∅

then any w ∉ L(G) if S * γAδ ⇝ γαβδ * w

Intuition:

 S * γAδ ⇝ γ α β δ * w

Symbol insertion: Let p = A → α●β ∈ P●, X ∈ V. If

• follow(left(A → α●Xβ)) ∩ right(A → α●Xβ) = ∅, or

• left(A → α●Xβ) ∩ precede(right(A → α●Xβ)) = ∅

then any w ∉ L(G) if S * γAδ ⇝ γαXβδ * w

Experimental Results

• Simpl - small imperative language (like Ampl)

• student grammars, yacc encoding from given EBNF

• differential testing

– test cases generated from grammar, using cover algorithm

– tested on golden parser

Conclusions

• Better grammar coverage gives better system coverage

– token construction mechanism makes large difference

– specialized criteria can outperform simple k-step for small k

• Random test suites outperform simple k-step for large k

• Negative test cases can be generated constructively

– number of edit-based mutants grows very large

– number of rule-based mutants remains reasonable

– mutations allow precise oracles (location / error type)

	Slide 1
	Slide 2: Grammar-Based Testing
	Slide 3
	Slide 4: Grammar-Based Testing Assumptions
	Slide 5: Grammar-Based Test Suite Adequacy
	Slide 6: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 7: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 8: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 9: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 10: A Family of Grammar-Based Test Suite Adequacy Criteria
	Slide 11: Generic Cover Algorithm
	Slide 12: Generic Cover Algorithm
	Slide 13: A Family of Grammar-Based Test Suite Adequacy Criteria…and some odd cousins
	Slide 15: Experimental Results - Coverage
	Slide 16: Experimental Results - Bug finding
	Slide 17: Random Test Suite Generation
	Slide 18: Experimental Results - Bug finding
	Slide 19
	Slide 20: Grammar-Based Testing
	Slide 21: Mutation-Based Language Fuzzing
	Slide 22: Basic Notations
	Slide 23: Word Mutation Operators
	Slide 24: Word Mutation Algorithm
	Slide 25: Rule Mutation Operators
	Slide 26: Experimental Results
	Slide 27: Conclusions

