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A B S T R A C T

We describe and evaluate spectrum-based methods aimed at finding faults in context-free grammars. In their
basic form, they take as input a test suite and a parser for the grammar that is modified to collect grammar
spectra (i.e., the sets of grammar elements used in attempts to parse the individual test cases), and return as
output a ranked list of suspicious elements. We define grammar spectra suitable for localizing faults on the
level of the grammar rules (i.e., rule spectra) and the rules’ individual symbols (i.e., item spectra), respectively.
We show how both types of grammar spectra can be collected by both LL and LR parsers, and how the
JavaCC, ANTLR, and CUP parser generators can be modified and used to automate the collection of the
grammar spectra. We also show how grammar spectra can be synthesized directly from test cases derived
from a grammar, and how such synthetic spectra can be used to localize differences between a grammar and
a black-box system under test.

We first evaluate our approach over a large number of medium-sized single fault grammars, which we
constructed by fault seeding from a common origin grammar. At the rule level, it ranks the rules containing
the seeded faults within the top five rules in about 40%–70% of the cases, depending on the applied parsing
technique, test suite, and ranking metric, and pinpoints them (i.e., correctly identifies them as unique most
suspicious rule) in about 10%–30% of the cases, with significantly better results for the synthetic spectra. At
the item level, our approach remains remarkably effective despite the larger number of possible locations,
provided it is coupled with a simple tie-breaking strategy that prefers items with the right-most designated
position over other items from the same rules in a tie. It typically ranks the seeded faults within the top five
positions in about 30%–60% of the cases, and pinpoints them in about 15%–40% of the cases. This specialized
item-level localization also significantly outperforms a simplistic extension of the rule-level localization, where
all positions within a rule are given the same score.

We further evaluate our approach over grammars that contain real faults. We show that an iterative method
can be used to localize and manually remove one by one multiple faults in grammars submitted by students
enrolled in various compiler engineering courses; in most iterations, the top-ranked rule already contains an
error, and no error is ranked outside the top five ranked rules. We finally apply our approach to a large
open-source SQLite grammar and show where this version deviates from the language accepted by the actual
SQLite system.
1. Introduction

Grammars are software, and can contain bugs like any other soft-
ware. Testing can show the presence of bugs, but does not give any
direct information about bug locations. Software fault localization (de
Souza et al., 2016; Wong et al., 2016) builds on testing and tries to
automatically identify likely bug locations. Spectrum-based fault local-
ization (SFL) (Renieris and Reiss, 2003; Jones and Harrold, 2005; Abreu
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et al., 2006; Wong et al., 2014; Naish et al., 2011) executes the system
under test (SUT) over a given test suite and records a program spectrum,
a representation of the execution information for the SUT’s individual
program elements; SFL methods typically rely on method coverage or
statement coverage, i.e., record whether a method has been called or not
resp. whether a statement has been executed or not. From the spectrum,
they then compute a suspiciousness score for each program element,
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which can be seen as the likelihood that that element contains a bug.
The elements are then sorted by decreasing score so that the most likely
bug locations are ranked first.

In this paper, we describe and evaluate spectrum-based methods to
localize faults in a context-free grammar. We first consider localization
at the level of grammar rules. We view a rule to be possibly faulty if
it is applied in a derivation of a string that is accepted by a parser
for the grammar but is outside the ‘‘true’’ language (which may be
different), or vice versa, if it is applied in a partial derivation of a
string that is rejected by the parser, but that is within the true language.
This view fits well with spectrum-based fault localization: we keep the
established framework in place and only replace the concept of ‘‘called
methods’’ by that of ‘‘applied rules’’. We therefore introduce rule spectra
to summarize which the grammar rules have been (partially) applied
in an attempt to parse an input string. We show how rule spectra can
be collected for both LL and LR parsers. One technical problem here
is to identify the rules that have been applied only partially when an
LR parser encounters a syntax error and thus does not execute the
reduction that marks the completion of the rule application. We recover
the missing rules from the items contained in the states that are on the
parser stack when it encounters a syntax error.

We then refine our method to localize errors more precisely, at the
level of the individual symbols in a rule. Our basic idea here is to use
spectra over items (i.e., rules with designated positions) for localization.
This exploits the fact that the designated position marks the boundary
between the part of a rule that has already been processed successfully
and the part that still needs to be processed; hence, we can assume that
the error is at the symbol following the designated position. We show
how item spectra can be collected for both LL and LR parsers; in both
cases, items are collected (explicitly or implicitly) on shift operations.
For LL parsers, we add the corresponding item whenever the parser
consumes a token or returns from a parse function call. For LR parsers,
we propose two different methods. In the first method, we also extend
the extraction of rule spectra and add all other items corresponding to
a rule on reduction with this rule; on encountering a syntax error, we
extract and add the relevant items from the states on the parse stack.
This amounts to a backwards-looking reconstruction of the items as
they are shifted onto the stack. In the second, forward-looking, method
we add all items associated with a state whenever that state is pushed
onto the stack; note that this yields larger spectra than the backwards-
looking method, but this apparent loss of precision does not necessarily
translate into a worse localization performance, because the metrics
are based on the spectral differences and compute a quotient between
passing and failing counts.

For the construction of the grammar spectra the parser must provide
information about which rules it has applied in the parsing process.
Parsers generated by ANTLR (2018) contain some extensions to provide
this support, but parsers generated by CUP (2014) or JavaCC (2020)
do not. We have therefore extended CUP and JavaCC themselves to
generate parsers with the required logging. However, we also show
how our approach can be ‘‘flipped’’ and can be used with black-box
parsers that cannot be extended to collect spectra. More specifically,
we construct synthetic grammar spectra directly from test cases derived
from a grammar, and use these to localize differences between the
grammar and the language accepted by the SUT.

We qualitatively and quantitatively evaluate our approach under a
number of different fault models and scenarios, including the use of
various parsing techniques, test suites, and ranking metrics. We first
use a large number of medium-sized single fault grammars, which
are constructed from a common grammar by fault seeding. Note that
fault seeding is widely used in SFL evaluation (e.g., Abreu, 2009; Wen
et al., 2011) because it produces a large number of faulty subjects with
known error locations. Our rule-level localization method typically
ranks the rules containing the seeded faults within the top five grammar
rules for about 40%–70% of the grammars, depending on the applied
2

parsing technique, test suite, and ranking metric. It pinpoints them
(i.e., correctly identifies them as unique most suspicious rule) in about
10%–30% of the cases. On average, it ranks the faulty rules within
about 25% of all rules, and in less than 15% for a very large test
suite containing both positive and negative test cases. Our method
pinpoints far fewer of the seeded faults down to the exact symbol
position, or even ranks them within the top five positions, due to the
much larger number of possible locations and corresponding larger ties
(i.e., groups of equally suspicious locations). However, a simple tie-
breaking strategy that prefers the item with the right-most designated
position over all items derived from the same rule in a tie proves
remarkably effective: it typically ranks the seeded faults within the top
five positions in about 30%–60% of the cases, and pinpoints them in
about 15%–40% of the cases. On average, it ranks the seeded faults
within about 10%–20% of all positions. The specialized item-level
localization also significantly outperforms a simplistic extension of the
rule-level localization, where all positions within a rule are given the
same score.

Second, we analyze grammars submitted by students enrolled in
compiler engineering courses. Such grammars contain real and often
multiple faults; however, SFL is based on a single fault assumption,
and SFL methods can be misled by interactions between multiple
faults (Abreu et al., 2009; Xue and Namin, 2013). We demonstrate that
our method remains effective in this more difficult situation. We use
an iterative ‘‘one-bug-at-a-time’’ (OBA) technique originally proposed
by Jones et al. (2002) in the context of fault localization in programs
to localize and manually remove multiple faults one by one; in most
iterations, the top-ranked rule already contains a fault, and no fault is
ranked outside the top five ranked rules.

Finally, we address the scalabilty of our approach, and use it to
identify four locations in an open-source SQLite grammar (Kiers, 2016)
where it deviates from the language accepted by the actual SQLite
system (SQLite, 2021). Here, we construct synthetic grammar spec-
tra directly from the test cases derived from the grammar, and use
the SQLite system as a black box to collect the required pass/fail
information.

Our approach works at a higher abstraction level than generic
SFL approaches and returns fault locations in domain-specific terms
(i.e., rules or symbols rather than methods or statements). This yields
several benefits. First, it can increase the localization precision because
it discards all aspects of the parser’s internal bookkeeping and error
handling code that could impact the localization using generic program
spectra. Second, it can also be meaningfully applied when there is no
direct representation of the individual rules as executable code; this is
typically the case for LR parsers that use table-driven implementations.
Third, it can simplify subsequent repair attempts – grammar writers can
use the results directly and do not need to manually map between the
parser’s implementation and the grammar elements.

Outline and contributions. In Section 2, we fix the basic grammar no-
tations that we use in this paper and give the necessary background
on spectrum-based fault localization. In Sections 3 and 4, we define
the various notions of grammar spectra that are at the core of our
work and illustrate them with worked examples. In Section 5, we
describe our implementation of grammar spectrum extraction for the
ANTLR, CUP, and JavaCC parser generators. In Section 6, we discuss
the research questions that underly our experimental evaluation. In
Section 7, we evaluate our methods for rule-level and item-level fault
localization, respectively, over grammars with seeded single faults,
and give observations on the effects of different parsing techniques,
test suites, and ranking metrics on the effectiveness of our methods.
In Section 8, we evaluate the rule-level localization over grammars
submitted by students enrolled in compiler engineering courses, which
contain real faults. In Section 9, we demonstrate that our approach also
works for large grammars and for large black box systems under test
(i.e., SQLite). The experimental results show that our approach can in

many cases identify faults in a CFG precisely, even in the presence of
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multiple, real faults; however, in Section 10, we discuss threats to the
validity of generalizing these results. In Sections 11 and 12, we discuss
related work and conclude with suggestions for future work.

This paper builds on ideas we introduced in our SLE 2019 pa-
per (Raselimo and Fischer, 2019). The major conceptual extension over
that paper is the definition of item spectra for a more precise fault local-
ization at the level of the individual symbols in a rule (see Section 4).
This extension is technically intricate but it significantly improves over
a simplistic extension of rule-level localization to positions (see Table 6
and RQ4) and opens up new applications of our approach, in particular
in grammar repair (Raselimo and Fischer, 2021). We also show how
grammar spectra can be synthesized directly from test cases derived
from a grammar (see Section 5.3), and how such synthetic spectra can
be used to localize differences between a grammar and a black-box
system under test. We further provide an extended evaluation using
the JavaCC parser generator, demonstrating that our approach works
over a wider range of parsing technologies, and show that it scales to
a large SQL grammar as well.

In summary, in this paper we make the following main contribu-
tions:

• we present spectrum-based methods to localize faults in a context-
free grammar, at the level of rules and at the level of the individ-
ual symbols in the rules;

• we describe an implementation of our methods that works with
the JavaCC, ANTLR, and CUP parser generators;

• we demonstrate the effectiveness of our approach over grammars
with seeded faults as well as student submissions from compiler
engineering courses that contain multiple real faults;

• we demonstrate that our approach scales to large grammars;
• we show how our approach can be applied to grammars for

black-box systems as well; and
• we evaluate the effects of different ranking metrics, test suites,

and applied parsing techniques on the localization results.

n combination with the underlying SLE 2019 paper (Raselimo and
ischer, 2019), our work represents the first approach to localize faults
n a context-free grammar.

. Background and notation

rammars and meta-variables. A context-free grammar (CFG) or simply
grammar is a four-tuple 𝐺 = (𝑁, 𝑇 , 𝑃 , 𝑆) with 𝑁 ∩ 𝑇 = ∅, 𝑉 = 𝑁 ∪ 𝑇 ,

⊂ 𝑁 × 𝑉 ∗, and 𝑆 ∈ 𝑁 . We call 𝑆 the start symbol and use 𝐴,𝐵, 𝐶,…
or non-terminals in 𝑁 , 𝑎, 𝑏, 𝑐,… for terminals or tokens in 𝑇 , 𝑋, 𝑌 ,𝑍 for
rammar symbols in 𝑉 , 𝑝, 𝑞, 𝑟 for productions or rules in 𝑃 , 𝑢, 𝑣,𝑤, 𝑥, 𝑦, 𝑧
or strings over 𝑇 ∗, and 𝛼, 𝛽, 𝛾,… , 𝜔 for phrases over 𝑉 ∗, with 𝜀 for the
mpty phrase and |𝛼| for the length of 𝛼. In more complex examples, we
lso use italics and 𝚋𝚘𝚕𝚍 𝚝𝚢𝚙𝚎𝚠𝚛𝚒𝚝𝚎𝚛 font for non-terminal and terminal
ymbols, respectively; we use normal typewriter font for structured
okens with different instances such as identifiers.

We also write 𝐴 → 𝛾 for a rule (𝐴, 𝛾) ∈ 𝑃 and use 𝑃𝐴 = {𝐴 → 𝛾 ∈ 𝑃 }
o denote the set of all rules for 𝐴; for consistency, we define 𝑃𝑎 = ∅. We
all left(𝑅) = 𝑅∪{𝐵 → 𝛽 ∈ 𝑃 ∣ 𝐴 → 𝐵𝛼 ∈ 𝑅} the left expansion of 𝑅 ⊆ 𝑃
nd use closure(𝑅) to denote the closure of 𝑅 under left expansion. Note
hat this mirrors the itemset closure operation used in the construction
f LR parsers.

tems. An item is a rule 𝐴 → 𝛼 ∙ 𝛽 with a designated position (denoted
y ∙) on its right-hand side. An item is called a kernel item if 𝛼 ≠ 𝜀 or
= 𝜀 and 𝐴 = 𝑆. We use 𝑃 ∙ to denote the set of all items, i.e., all rules
ith all designated positions, and define a function items(𝐴 → 𝛾) =
𝐴 → 𝛼 ∙ 𝛽 ∣ 𝛾 = 𝛼𝛽} that maps a rule to all its items.

erivations and generated language. A derivation ⇒𝐺 ⊆ 𝑉 ∗ × 𝑉 ∗ over 𝐺
elates phrases according to 𝐺. We use 𝛼𝐴𝛽 ⇒𝐺 𝛼𝛾𝛽 to denote that 𝛼𝐴𝛽
roduces (or derives) 𝛼𝛾𝛽 by application of the rule 𝐴 → 𝛾 ∈ 𝑃 . We write
3

Table 1
SFL ranking metrics.

Ranking metric 𝑠𝑐𝑜𝑟𝑒(𝑒)

Tarantula (Jones and Harrold, 2005)
(

ef(𝑒)
ef(𝑒)+nf(𝑒)

)

∕
(

ef(𝑒)
ef(𝑒)+nf(𝑒)+

ep(𝑒)
ep(𝑒)+np(𝑒)

)

Ochiai (Ochiai, 1957) ef(𝑒)
√

(ef(𝑒)+nf(𝑒))(ef(𝑒)+ep(𝑒))

Jaccard (Chen et al., 2002) ef(𝑒)
ef(𝑒)+nf(𝑒)+ep(𝑒)

DStar (Wong et al., 2014) ef(𝑒)𝑛
nf(𝑒)+ep(𝑒)

⇒ if the grammar is clear from the context and ⇒𝑅 if 𝐴 → 𝛾 ∈ 𝑅 ⊆ 𝑃 .
We use ⇒∗ for the reflexive-transitive closure. We call a phrase 𝛼 a
sentential form if 𝑆 ⇒∗ 𝛼 and a sentence if it is also a string, i.e., 𝛼 ∈ 𝑇 ∗.
For a derivation 𝛥 = 𝛼0 ⇒𝑝1 𝛼1 ⇒𝑝2 … ⇒𝑝𝑛 𝛼𝑛, we use rules(𝛥) = ⋃

𝑖 {𝑝𝑖}
o denote the set of applied rules.

The yield of a phrase 𝛼 is the set of all strings that can be derived
rom it, i.e., yield(𝛼) = {𝑤 ∈ 𝑇 ∗ ∣ 𝛼 ⇒∗ 𝑤}. 𝛼 is nullable if 𝜀 ∈ yield(𝛼).
he language 𝐿(𝐺) generated by a grammar 𝐺 is the yield of its start
ymbol, i.e., 𝐿(𝐺) = {𝑤 ∈ 𝑇 ∗ ∣ 𝑆 ⇒∗ 𝑤}.

refixes and bounded derivations. We call 𝑢 a viable 𝑘-prefix of a string
𝑤 = 𝑢𝑣 if |𝑢| ≤ 𝑘 and 𝑆 ⇒∗ 𝑢𝑣′ for a 𝑣′ ∈ 𝑇 ∗, and denote this by 𝑢 ⪯𝑘 𝑤.
We call a viable 𝑘-prefix 𝑢 ⪯𝑘 𝑤 maximal if there is no 𝑎 ∈ 𝑇 such
hat 𝑢𝑎 ⪯𝑘+1 𝑤. Hence, 𝑤 ⪯

|𝑤|

𝑤 iff 𝑤 ∈ 𝐿(𝐺) and, conversely, if the
aximal viable prefix 𝑢 has length 𝑘 < |𝑤| then 𝑤 has a syntax error

hat can be detected at position 𝑘 + 1.
A derivation 𝛥 = 𝑆 ⇒∗ 𝜔 is 𝑘-prefix bounded for 𝑤 if (i) 𝜔 ⇒∗ 𝑤

nd (ii) for any derivation step 𝛼𝐴𝛽 ⇒ 𝛼𝛾𝛽 in 𝛥 we have 𝛼 ⇒∗ 𝑢 and
𝐴𝛽 ⇒∗ 𝑢𝑣 = 𝑤 implies (a) |𝑢| < 𝑘 or (b) |𝑢| = 𝑘 and 𝑢𝛽 ⇒∗ 𝑤. We
enote this by 𝑆

𝑘
⇒∗

𝑤 𝜔. A 𝑘-prefix bounded derivation for 𝑤 therefore
ever expands a non-terminal symbol whose yield in 𝑤 will ultimately
tart only beyond a prefix of length 𝑘. 𝑆

𝑘
⇒∗

𝑤 𝜔 is maximal if 𝜔 = 𝑢𝛼
or |𝑢| = 𝑘, i.e., if we have applied all rules in the 𝑘-prefix. Note that
or any 𝑤 = 𝑢𝑣 ∉ 𝐿(𝐺) with maximal viable 𝑘-prefix 𝑢, there exist a
ot necessarily unique 𝑤′ = 𝑢𝑣′ ∈ 𝐿(𝐺) and corresponding maximal
-prefix bounded derivation 𝑆

𝑘
⇒∗

𝑤′ 𝑢𝑋𝛼 for 𝑤′. We call any such 𝛥 a
aximally viable 𝑘-prefix bounded derivation for 𝑤 with frontier 𝑋 and
efine its frontier rules as closure(𝑃𝑋 ). We call the implied 𝑣′ its right
ompletion. The frontier rules thus describe how the correct prefix 𝑢
ould be completed via a frontier 𝑋. If the grammar 𝐺 is assumed to
e correct, they can be seen as the specification for an error correction
or the erroneous input 𝑤; however, if 𝐺 is incorrect, the frontier rules
r the rules applied to derive 𝑢 must contain a fault.

est suites. A test suite is a set of SUT inputs and corresponding expected
utputs; note that the expected output can also be a specific system
rror, e.g., in reaction to an illegal input. The SUT passes a test if it
roduces the expected output for the given input. In our case, test
nputs are strings 𝑤 ∈ 𝑇 ∗ and expected outputs are either ‘‘accept’’
r ‘‘reject’’. We could in principle try to prevent the mis-classification
f applied rules, and so increase the precision of the fault localization,
y using more details in the expected outputs (e.g., error locations) but
e do not do this here because it is difficult to implement as these
etails may depend on internal aspects of the parser (e.g., lookahead
ize, verbosity, or error correction strategy). We call a test case positive
f its expected output is accept (i.e., the input is syntactically correct)
nd negative otherwise.

rammar-based test suite construction. For our experimental evaluation
e use different test suites that are generated from a ‘‘golden’’ grammar

hat describes the intended language. For the construction of positive
ests we use a generic cover algorithm (van Heerden et al., 2020)
ith different grammar coverage criteria (Lämmel, 2001). The algorithm

ollows the similar approaches by Fischer et al. (2011) and Havrikov
nd Zeller (2019). Its basic idea is to (i) iterate over all symbols 𝑋 ∈ 𝑉 ,
ii) embed 𝑋, i.e., compute a minimal derivation 𝑆 ⇒∗ 𝛼𝑋𝜔, (iii) cover
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(

𝑋, i.e., compute a set of minimal derivations 𝑋 ⇒∗ 𝛾 that conform
to the criterion, and (iv) convert the sentential form into a sentence,
i.e., compute a minimal derivation 𝛼𝛾𝜔 ⇒∗ 𝑤 where each non-terminal
𝐴 in 𝛼𝛾𝜔 is replaced by its minimal yield 𝑤𝐴. Note that this algorithm
is by construction biased towards short tests because it uses of minimal
derivations in all steps.

We use the standard coverage criteria rule and cdrc (Lämmel, 2001)
as well as their extension to 𝑘-step derivations (also called 𝑘-path cover-
age Havrikov and Zeller, 2019) as arguments to the cover algorithm. In
addition, we also use derivable pair coverage (van Heerden et al., 2020),
which can be seen as a fixpoint version of 𝑘-step coverage, since it
covers the shortest derivation between any two symbols irrespective of
its length, adjacent pair coverage, which ensures that any pairs 𝑋, 𝑌 ∈ 𝑉
with 𝑌 ∈ follow(𝑋) are covered, and full cdrc, a breadth-first version of
cdrc (van Heerden et al., 2020).

For the construction of negative tests, we use the token- and rule-
mutation algorithms by Raselimo et al. (2019). Both algorithms guar-
antee that the generated tests contain exactly one syntax error.

Failure, error, fault. In software engineering, the informal notion of a
‘‘bug’’ is deconstructed into three different concepts (IEEE Std 610.12-
1990, 1990).2 A failure occurs when the system’s observed output
deviates from the correct output, an error is an internal system state
that may lead to a failure, and a fault is a code fragment which can
cause an error in the system when it is executed. Note that errors do not
necessarily manifest themselves as observable failures. Fault localization
tries to identify the unknown fault from an observed failure.

Program spectra. A program spectrum is a representation of the exe-
cution information for the SUT’s individual program elements; most
SFL methods use method or statement coverage, i.e., record whether
a method (resp. statement) has been called (resp. executed) in a given
test or not. The coverage information for each test is then correlated
with the corresponding test outcomes. Spectra can thus be interpreted
as two binary relations ∼✓,∼✗∶  ×  between the elements  of the
SUT and the test suite  , where 𝑒𝑖 ∼✓ 𝑡𝑗 holds iff 𝑒𝑖 is exercised in the
execution of the passing test 𝑡𝑗 (and similarly for 𝑒𝑖 ∼✗ 𝑡𝑘 for a failing
test 𝑡𝑘). They are typically visualized as matrices, as for example shown
in Table 2.

From the spectra, we compute four basic counts for each individual
program element 𝑒: ep(𝑒) (resp. ef(𝑒)) are the number of passed (resp.
failed) tests in which 𝑒 is executed, while np(𝑒) (resp. nf (𝑒)) are the
number of passed (resp. failed) tests in which 𝑒 is not executed. Given
the number of passed tests tp (resp. failed tests tf ) in the test suite, we
have ep(𝑒) + np(𝑒) = tp and ef(𝑒) + nf(𝑒) = tf for each 𝑒.

Ranking metrics. From the basic counts, SFL methods compute a suspi-
ciousness score for each program element; elements that have a higher
score are seen as more likely to contain a bug and are ranked higher.
The methods differ in the formulas (which are traditionally called
ranking metrics, even though they are not proper metrics) used for the
score computation. In our evaluation, we use four different ranking
metrics (see Table 1 for their definitions) that are widely used in SFL.
Note that Tarantula is the only metric that uses the number of passed
tests np(𝑒) in which an element 𝑒 is not executed. Note also that DStar
is parameterized over the exponent 𝑛; here, we use the most common
value 𝑛 = 2. DStar becomes undefined for an element 𝑒 if it is executed
only in failing test cases. We assign a maximal score in this case, since
we consider 𝑒 to be a maximally suspicious element.

If the test suite lacks a failing test, the metrics may become unde-
fined or result in equal rankings for all elements; if the test suite lacks a
passing test, the metrics may become undefined or rank elements based
solely on their occurrence count. We therefore assume here that test
suites indeed contain at least one failing and one passing test.

2 This slightly differs from the ‘‘defect - infection - failure’’ model by Zeller
2009). The Zeller model is, however, not as widely used.
4

Fig. 1. An example grammar 𝐺oy (top) and its corresponding rule test suite (bottom).

The metrics sometimes assign the same score to different elements.
Specifically, for ranking, we need to resolve such ties and assign a well-
defined rank to all tied elements. We use the mid-point of the range of
elements with the same score; the assigned rank then indicates how
many elements a user is expected to inspect before they find the fault
if elements with the same score are inspected in random order. A more
pessimistic variant uses the lowest possible rank that is consistent with
the scores; this corresponds to a worst-case estimate of the number of
elements to be inspected.

3. Rule-level fault localization

In this section, we illustrate and formalize fault localization at the
level of grammar rules; we introduce a more fine-grained localization at
the level of the rules’ individual symbols in Section 4. In the following,
we assume that the SUT is a CFG 𝐺 = (𝑁, 𝑇 , 𝑃 , 𝑆), which we assume to
be implemented faithfully in an executable parser (since we are trying
to localize faults in the grammar, not in the parser’s implementation).

3.1. Worked example

We illustrate our method with a worked example centered on the
toy grammar 𝐺oy shown in Fig. 1(a), and the test suite shown in
Fig. 1(b) that satisfies rule-coverage. Note that 𝐺oy is not LL(𝑘), but
in a form that is suitable for LR parsers. We assume that the grammar

developer has made mistakes in formulating some statement rules in
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Table 2
Rule spectra, suspiciousness scores, and ranks for the faulty grammar version 𝐺′

oy and rule test suite. Rules are denoted by the non-terminal name and the index of the corresponding
lternative. ✓(resp. ✗) indicates execution in a passing (resp. failing) test cases shown in Fig. 1(b); (✗) indicates that the rule is added to the spectrum only through the closure
f the frontier symbol. Ranks are only shown for rules with non-zero scores; ties are indicated by a preceding ‘‘=’’. Faulty rules are shown in bold.
Rule 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 𝑒𝑝 𝑛𝑝 𝑒𝑓 𝑛𝑓 Tarantula Ochiai Jaccard DStar
prog :1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 10 0.35 =8 0.13 10 0.29 8
block:1 ✓ (✗) 1 13 1 1 0.88 =2 0.50 =3 0.33 =2 0.50 =3
block:2 ✓ ✓ ✓ (✗) 3 11 1 1 0.70 6 0.35 =8 0.20 =6 0.25 9
block:3 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ 8 6 2 0 0.64 =7 0.45 5 0.20 =6 0.50 =3
block:4 (✗) ✓ ✓ 2 12 1 1 0.78 4 0.41 7 0.25 5 0.33 7
decls:1 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
decls:2 ✓ ✓ ✓ 3 11 0 2 0.00 – 0.00 – 0.00 – 0.00 –
decl:1 ✓ ✓ ✓ ✓ 4 10 0 2 0.00 – 0.00 – 0.00 – 0.00 –
type:1 ✓ ✓ ✓ 3 11 0 2 0.00 – 0.00 – 0.00 – 0.00 –
type:2 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
stmts:1 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
stmts:2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ 9 5 2 0 0.61 9 0.43 6 0.18 8 0.44 6
stmt :1 ✗ ✓ ✓ ✓ ✓ 4 10 1 1 0.64 =7 0.32 10 0.17 9 0.20 10
stmt:2 ✗ ✓ 1 13 1 1 0.88 =2 0.50 =3 0.33 =2 0.50 =3
stmt:3 ✗ 0 14 1 1 1.00 1 0.71 1 0.50 1 1.00 1
stmt :4 ✓ ✓ ✓ ✓ ✓ 5 9 0 2 0.00 – 0.00 – 0.00 – 0.00 –
stmt :5 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
expr :1 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
expr :2 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
expr :3 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
expr :4 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 5 9 2 0 0.74 5 0.53 2 0.29 4 0.80 2
expr :5 ✓ 1 13 0 2 0.00 – 0.00 – 0.00 – 0.00 –
⋯
s

b

s

𝐺oy , requiring the 𝚎𝚕𝚜𝚎-branch to be present and restricting the body
f 𝚠𝚑𝚒𝚕𝚎-loops to be blocks:

stmt → 𝚜𝚕𝚎𝚎𝚙

∣ 𝚒𝚏 expr 𝚝𝚑𝚎𝚗 stmt 𝚎𝚕𝚜𝚎 stmt

∣ 𝚠𝚑𝚒𝚕𝚎 expr 𝚍𝚘 block

∣ 𝚒𝚍= expr

∣ block

e call this faulty version 𝐺′
oy .

We create a parser for 𝐺′
oy and run it over the test suite in Fig. 1(b)

o collect the grammar spectra shown in Table 2. Rules are denoted by
he non-terminal name and the index of the corresponding alternative.
(resp. ✗) indicates execution of a rule in a passing (resp. failing) test
ases; (✗) indicates that a rule is added to the spectrum only through
he closure of the frontier symbol. The faulty rules are shown in bold.

e finally compute the scores according to the four ranking metrics
hown in Table 1 and rank the rules; note that ties can also result from
ifferent execution counts, as the example of block:1 and block:3 under
Star shows. Ranks are only shown for rules with non-zero scores.

All four metrics pinpoint the faulty 𝚠𝚑𝚒𝚕𝚎-rule (i.e., stmt :3) as the
unique most suspicious rule. This is hardly surprising because the rule
is only applied in one test case and that one is failing. The second
fault is more difficult to localize because the faulty rule is executed
in both failing and passing test cases. Tarantula and Jaccard rank it
second while Ochiai and DStar rank it third, in both cases behind the
rule expr → 𝚒𝚍 that is applied in most derivations.

If we inspect the rules in rank order and resolve ties by picking rules
arbitrarily, we have on average to look at 2.5 rules (i.e., 11.4% of all
rules) before we find both faults using Tarantula or Jaccard, 3.5 rules
(or 15.9%) using Ochiai, and 4 rules (or 18.2%) using DStar.

3.2. Rule spectra

We can informally define a rule spectrum as the set of all rules 𝑅 ⊆ 𝑃
hat are applied when a test 𝑤 in the test suite is parsed. However,

which rules are actually applied depends on the nature of the parser,
in particular when it rejects 𝑤. We therefore first formalize our intuition
in terms of generic derivations, and then concretize it in Sections 5.1
and 5.2 for LL and LR parsers.

For accepted tests the formal definition of rule spectra directly
follows our intuition; note that a string 𝑤 ∈ 𝐿(𝐺) can induce multiple
5

rule spectra if 𝐺 is ambiguous.
Definition 3.1 (Positive Rule Spectrum). If 𝛥 = 𝑆 ⇒𝑝1 𝛼1 ⇒𝑝2 𝛼2 ⇒𝑝3
⇒𝑝𝑛 𝛼𝑛 = 𝑤, then 𝑅 =

⋃

𝑖 {𝑝𝑖} = rules(𝛥) is called a positive rule
pectrum for 𝑤.

Note that 𝛥 = 𝑆 ⇒∗ 𝑤 is a maximally viable |𝑤|-prefix bounded
derivation (see Section 2) for 𝑤, since 𝑤 ∈ 𝐿(𝐺). We can use this
observation as starting point for the definition of spectra in cases
where 𝑤 ∉ 𝐿(𝐺): we consider all rules of a maximally viable 𝑘-prefix
ounded derivation 𝛥 for 𝑤, i.e., all rules that have been applied to

the left of the error position. However, we must also consider the
frontier rules because the error could be either in the rule in 𝛥 that
introduced the frontier, or in any of 𝛥’s frontier rules themselves.
Consider for example the situation where we are trying to parse 𝑤 =
𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚊= { 𝚠𝚑𝚒𝚕𝚎 𝚊 𝚍𝚘 𝚜𝚕𝚎𝚎𝚙; } . (i.e., test case #14) with the faulty
version 𝐺′

oy . This fails at 𝚜𝚕𝚎𝚎𝚙 because 𝐺′
oy expects body to be a

block and 𝚜𝚕𝚎𝚎𝚙 is a stmt . The maximal viable prefix 𝑢 of 𝑤 is thus 𝑢 =
𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚊= { 𝚠𝚑𝚒𝚕𝚎 𝚊 𝚍𝚘 , with 𝑣 = {} ; } . a possible right completion
o that 𝑢𝑣 ∈ 𝐿(𝐺′

oy ). One (and in this case the only possible) maximal
𝑘-prefix bounded derivation using 𝐺′

oy with 𝑘 = 7 for 𝑤 is

𝛥 = prog⇒prog∶1 𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚒𝚍= block .

⇒block∶3 𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚒𝚍= { stmts }.
⇒stmts∶2 𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚒𝚍= { stmt }.
⇒stmt∶3 𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚒𝚍= { 𝚠𝚑𝚒𝚕𝚎 expr 𝚍𝚘 block }.

⇒expr∶4 𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚒𝚍= { 𝚠𝚑𝚒𝚕𝚎 𝚒𝚍 𝚍𝚘 block }.

with the frontier symbol block and rules(𝛥) ={prog :1, block:3, stmts:2,
stmt :3, expr :4}. We can presume that the fault is in stmt :3 (where it
was indeed introduced) but with the information at hand we cannot
rule out that any of the block-rules is at fault — for example, block:4
could have been meant to be of the form block → 𝚜𝚕𝚎𝚎𝚙; . This requires
us to include all possible frontier rules in the (negative) spectra. Hence,
we get the following formal definition:

Definition 3.2 (Negative Rule Spectrum). Let 𝑤 = 𝑢𝑣 ∉ 𝐿(𝐺) with
maximal viable 𝑘-prefix 𝑢, and 𝑆 ⇒𝑝1 𝛼1 ⇒𝑝2 𝛼2 ⇒𝑝3 ⋯ ⇒𝑝𝑛 𝑢𝑋𝛼 be
a maximally viable 𝑘-prefix bounded derivation for 𝑤 with frontier 𝑋.
Then 𝑅 =

⋃

𝑖 {𝑝𝑖} ∪ closure(𝑃𝑋 ) is called a negative rule spectrum for 𝑤.

Note that this is a ‘‘loose’’ definition in the sense that a negative test
𝑤 ∉ 𝐿(𝐺) may induce several different negative spectra, since there can
be different maximally viable 𝑘-prefix bounded derivations for 𝑤, with
different right completions and frontiers. However, an LL(1)-parser will
exploit only one of these derivations and thus determinstically produce
only a single negative spectrum. Note also that Definition 3.2 can be
modified to subsume the ‘‘positive’’ and ‘‘negative’’ definitions, but we

keep the cases apart for simplicity.
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Table 3
Item spectra, suspiciousness scores, ranks, and resolved ranks for the faulty grammar version 𝐺′

oy and rule test suite. Items are denoted by the non-terminal name, the index of
the corresponding alternative, and the index of the designated position, with zero denoting the position before the right-hand side of the rule. ✓, ✗, and (✗) are defined as in
Table 2. Entries are only shown for items with non-zero scores. The standard ranking is shown on the left side of rank column, the resolved ranking using the 𝑘-max tie breaking
strategy described in Section 4.4 on the right side; ties are indicated by a preceding ‘‘=’’. Items corresponding to the fault locations are shown in bold.
Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 𝑒𝑝 𝑛𝑝 𝑒𝑓 𝑛𝑓 Tarantula Ochiai Jaccard DStar

prog :1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =19 0.35 =16 0.13 =19 0.29 =16
prog :1:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =19 0.35 =16 0.13 =19 0.29 =16
prog :1:2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =19 0.35 =16 0.13 =19 0.29 =16
prog :1:3 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =19 9 0.35 =16 =7 0.13 =19 9 0.29 =16 7
block:1:0 ✓ (✗) 1 13 1 1 0.88 =5 =2 0.50 =7 =3 0.33 =5 =2 0.50 =7 =3
block:2:0 ✓ ✓ ✓ (✗) 3 11 1 1 0.70 14 6 0.35 =16 =7 0.20 =14 =6 0.25 20 8
block:3:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ 8 6 2 0 0.64 =15 0.45 =13 0.20 =14 0.50 =7
block:3:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ 8 6 2 0 0.64 =15 =7 0.45 =13 5 0.20 =14 =6 0.50 =7 =3
block:4:0 (✗) ✓ ✓ 2 12 1 1 0.78 11 4 0.41 15 6 0.25 13 5 0.33 15 6
stmts:2:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ 8 6 2 0 0.44 24 11 0.22 24 11 0.09 24 11 0.10 24 11
stmts:2:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 8 6 1 1 0.47 23 10 0.24 23 10 0.10 23 10 0.11 23 10
stmt :1:0 ✗ ✓ ✓ ✓ ✓ 4 10 1 1 0.64 =15 0.32 =21 0.17 =17 0.20 =21
stmt :1:1 ✗ ✓ ✓ ✓ ✓ 4 10 1 1 0.64 =15 =7 0.32 =21 9 0.17 =17 8 0.20 =21 9
stmt :2:0 ✗ ✓ 1 13 1 1 0.88 =5 0.50 =7 0.33 =5 0.50 =7
stmt :2:1 ✗ ✓ 1 13 1 1 0.88 =5 0.50 =7 0.33 =5 0.50 =7
stmt :2:2 ✗ ✓ 1 13 1 1 0.88 =5 0.50 =7 0.33 =5 0.50 =7
stmt :2:3 ✗ ✓ 1 13 1 1 0.88 =5 0.50 =7 0.33 =5 0.50 =7
stmt:2:4 ✗ ✓ 1 13 1 1 0.88 =5 =2 0.50 =7 =3 0.33 =5 =2 0.50 =7 =3
stmt :3:0 ✗ 0 14 1 1 1.00 =1 0.71 =1 0.50 =1 1.00 =1
stmt :3:1 ✗ 0 14 1 1 1.00 =1 0.71 =1 0.50 =1 1.00 =1
stmt :3:2 ✗ 0 14 1 1 1.00 =1 0.71 =1 0.50 =1 1.00 =1
stmt:3:3 ✗ 0 14 1 1 1.00 =1 1 0.71 =1 1 0.50 =1 1 1.00 =1 1
expr :4:0 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 5 9 2 0 0.74 =12 0.53 =5 0.29 =11 0.80 =5
expr :4:1 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 5 9 2 0 0.74 =12 5 0.53 =5 2 0.29 =11 4 0.80 =5 2
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4. Item-level fault localization

Localization with rule spectra allows us to identify faulty rules in a
grammar; however, we still have to inspect the individual symbols on
the right-hand side of the rules to identify the actual fault location. This
can involve substantial effort since the rules can be long; for example,
the BNF version of the SQLite grammar (Kiers, 2016) has more than
twenty rules that each contain six or more symbols, and the length of
the longest rule is sixteen.

We therefore refine our method to localize errors more precisely,
at the level of the individual symbols in a rule. Our basic idea here
is to use spectra over items rather than over rules for the localization.
This exploits the fact that the designated position marks the boundary
between the part of a rule that has already been processed successfully
and the part that still needs to be processed; hence, we assume that the
error is at the symbol following the designated position.

Furthermore, the development of item-level localization is a nec-
essary step for automatic repair (Raselimo and Fischer, 2021). Item-
level localization naturally makes the search space easier to navigate
than rule-level localization. This follows a similar trend to automated
program repair algorithms (Monperrus, 2018; Gazzola et al., 2019;
Ghanbari et al., 2019), which use fine-grained statement-level fault
localization results, despite several spectrum-based fault localization
studies (de Souza et al., 2016; Wong et al., 2016) demonstrating that
SFL works better with method-level spectra than with statement-level
spectra.

In this section, we again illustrate our method with a worked
example, based on the same grammar 𝐺′

oy used in the previous section.
We then give formal definitions of item spectra and also introduce a
domain-specific tie breaking strategy.

4.1. Worked example

We illustrate the item-level localization with the same example as
in Section 3; specifically, we assume the same faulty grammar under
test 𝐺′

oy , with the faults in the 𝚠𝚑𝚒𝚕𝚎- and 𝚒𝚏-rules, but since we are
now trying to locate the position of one or more offending symbols on
the right-hand side of a rule, we use the two items

stmt → 𝚒𝚏 expr 𝚝𝚑𝚎𝚗 stmt ∙ 𝚎𝚕𝚜𝚎 stmt

stmt → 𝚠𝚑𝚒𝚕𝚎 expr 𝚍𝚘 ∙ block

to represent the faults.
Table 3 shows the detailed results for the item spectra collected

according to Definitions 4.1 and 4.2. Items are denoted by the non-
terminal name, the index of the corresponding alternative, as shown in
6

a

Fig. 1, and the index of the designated position (with zero denoting
the position before the right-hand side of the rule). Note that, due
to the large spectrum size (81 elements, compared to 15 elements
for rule spectrum), entries are shown only for the 25 items which
have been executed in at least one of the two failing test cases 6 and
24, and thus have non-zero suspiciousness scores. For each metric,
Table 3 shows two different rankings, the standard ranking and a
resolved ranking where ties are resolved using the 𝑘-max tie breaking
mechanism described in Section 4.4. In both cases, ties are indicated by
a preceding ‘‘=’’. Items corresponding to the fault locations are shown
in bold.

Results. In Table 3, we see that all four metrics assign the highest
suspiciousness score to four items from the 𝚠𝚑𝚒𝚕𝚎-rule but fail to
separate the actual fault position stmt :3:3 from the three preceding
items in the rule and so produce a four-way tie. As in the case of the
rule-level localization, the second fault is harder to localize, and all four
metrics again tie the actual fault position stmt :2:4 with the preceding
tems in the rule. Tarantula and Jaccard have it further tied with one
f the block-items at rank 5, while Ochiai and DStar rank it behind two
xpr :4-items at rank 7, in a 6-way and 8-way tie, respectively. Note
hat the items from a rule are not necessarily all scored identically. In
articular, the item stmt :2:5 (i.e., stmt → 𝚒𝚏 expr 𝚝𝚑𝚎𝚗 stmt 𝚎𝚕𝚜𝚎 ∙ stmt) is
cored zero by all metrics; this is a strong indication that the fault is
ocated to the left of its designated position. However, note also that
any items from the same rule are indeed scored identically, and that

he ties are therefore much longer than in rule-level localization.
If we inspect the items in rank order and resolve ties by picking rules

rbitrarily, we have on average to look at 7.5 positions (i.e., 9.3% of all
tems) in 3 rules before we find both faults using Tarantula and Jaccard,
.5 positions (11.7%) in 4 rules using Ochiai and 10.5 positions (13.0%)
n 6 rules using DStar. Note that the number of rules involved changes
ith the different orders in which the tied positions are inspected. Note
lso that by deriving a rule rank from the highest ranked item for
ach rule, the items induce the same rule-level ranking as the rule-level
ocalization (cf. Table 2), although that is not guaranteed in general.

.2. Plain item spectra

In our first approach, we still define the spectra over maximal
erivations; it is based on a more or less straightforward adaptation
f the corresponding definitions of rule spectra. We can therefore
nformally (as we did for rule spectra in Section 3.2) define an item
pectrum for the string 𝑤 in the test suite as the set of positions within
ules 𝑅∙ ⊆ 𝑃 ∙ that are processed successfully when 𝑤 is parsed. For
ccepted strings, the item spectrum simply includes all items from each

pplied rule.
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Fig. 2. Example construction of negative item spectrum.
i

Definition 4.1 (Positive Item Spectrum). If 𝑆 ⇒𝑝1 𝛼1 ⇒𝑝2 𝛼2 ⇒𝑝3 ⋯ ⇒𝑝𝑛
𝛼𝑛 = 𝑤, then 𝑅∙ =

⋃

𝑖 items(𝑝𝑖) is called a positive item spectrum for 𝑤.

For rejected strings, the adaptation is slightly more complex than
in the positive case. More specifically, we include in the spectrum only
items from rules in derivation steps whose yield up to the designated
position occurs before the syntax error. As in the case of the rule spectra
(see Definition 3.2), we must take the frontier rules into account;
however, here we only add the corresponding non-kernel items.

Definition 4.2 (Negative Item Spectrum). Let 𝑤 = 𝑢𝑣 ∉ 𝐿(𝐺) with
maximal viable 𝑘-prefix 𝑢, and 𝛥 = 𝑆 ⇒𝑝1 𝛼1 ⇒𝑝2 𝛼2 ⇒𝑝3 ⋯ ⇒𝑝𝑛 𝑢𝑋𝛼
be a maximally viable 𝑘-prefix bounded derivation for 𝑤 with frontier
𝑋. Then
𝑅∙ = {𝑝∙ ∣ 𝛼𝐴𝛽 ⇒𝑝 𝛼𝛾𝛽 ∈ 𝛥, 𝑝∙ = 𝐴 → 𝜇 ∙ 𝜈 ∈ items(𝑝),

∃𝑥 ∈ 𝑇 ∗ ⋅ 𝛼𝜇𝑥 ⇒∗ 𝑢}
∪ closure({𝑋 → ∙𝛾 ∣ 𝑋 → 𝛾 ∈ 𝑃 })

is called a negative item spectrum for 𝑤.

Fig. 2 illustrates the negative item spectrum construction for the
same maximal prefix-bounded derivation 𝛥 as in Section 3.2. It shows
on the left the individual derivation steps and on the right the cor-
responding extracted items; the spectrum 𝑅∙ is the union of all these
sets.

4.3. Shift item spectra

The plain item spectra we introduced in the previous section derive
the spectra from the individual derivation for each test case. Alter-
natively, we can try to extract a single spectrum from all possible
derivations that consume prefixes of the maximal viable prefix.

Definition 4.3 (Shift Item Spectrum). Let 𝑢 be the maximal viable
𝑘-prefix of 𝑤. Then

𝑅∙ =
⋃

𝑤′=𝑢𝑣∈𝐿(𝐺)
⋃

𝑢′⪯𝑖𝑢, 𝑖≤𝑘

{𝑝∙ ∣ 𝛥 = 𝑆
𝑖
⇒∗

𝑤′ 𝑢′𝜔, 𝛼𝐴𝛽 ⇒𝑝 𝛼𝛾𝛽 ∈ 𝛥,
𝑝∙ = 𝐴 → 𝜇 ∙ 𝜈 ∈ items(𝑝),∃𝑥 ∈ 𝑇 ∗ ⋅ 𝛼𝜇𝑥 ⇒∗ 𝑢′}

is called the shift item spectrum for 𝑤.

Definition 4.3 formulates this intuition. It considers all right com-
pletions 𝑣 of the maximal viable prefix 𝑢, and then all maximal prefix-
bounded derivations of the prefixes 𝑢′ of 𝑢 from these derivations, and‘
extracts the items of all applied rules. Note that this definition does
not explicitly consider the frontier rules (cf. Definition 4.2) because
they are implied by the different right completions 𝑣. Note also that
Definition 4.3 gives larger and denser spectra than Definition 4.1 if
𝑤 ∈ 𝐿(𝐺) because it considers all possible completions of valid prefixes,
while the plain positive item spectra only consider items for successful
7

rule applications. r
Worked example. Table 4 shows the corresponding results for shift item
spectra (see Definition 4.3). It is easy to see that these are indeed both
larger (i.e., have more non-zero suspiciousness scores, at 38 compared
to 25) and denser (i.e., items are associated with more test cases) than
the plain item spectra. However, this apparent loss of precision does not
necessarily translate into a worse localization performance, because the
metrics are based on the spectral difference between passing and failing
tests.

In fact, in this case, the results improve slightly for some metrics.
All four metrics now assign the highest suspiciousness scores to only
three items from the 𝚠𝚑𝚒𝚕𝚎-rule (i.e., stmt :3:1, stmt :3:2 and stmt :3:3).
Tarantula and Jaccard both rank the second fault (i.e., stmt :2:4) tied
fourth, with only three other items from the 𝚒𝚏-rule in the tie. Ochiai
ranks it tied fifth, but with a much wider tie comprising 11 items from
6 rules, while DStar struggles and ranks it tied twelfth. Overall, we
have on average to look at 5.5 positions (i.e., 6.8% of all positions)
in 2 rules before we find both faults using Tarantula or Jaccard, 10
positions (12.3%) in 7 rules using Ochiai, and 13.5 positions (16.7%)
in 7 rules using DStar.

4.4. Specialized tie breaking strategy

Since item spectra are larger and denser than rule spectra, ties are
more common and longer than in rule-level localization. Tables 3 and 4
clearly illustrate this. Our challenge is to reduce the sizes of the ties, and
ideally to rank the faulty items uniquely at the top of the tied group.
Here, we can take advantage of contextual information such as the type
of test suites used or even the structure of the grammar under test to
break ties on the fly. In the worked example, we used a test suite with
positive tests only, so we can resolve ties between items from the same
rule in favor of the item with the largest designated position (and could
in fact even drop items with subsumed designated positions entirely
from consideration). This improves the ranking and reduces the average
wasted effort, as the resolved ranks in Tables 3 and 4 show.

The basic idea of tie breaking using the 𝑘-max strategy is to resolve
ties in favor of the item from a grammar rule 𝑟 with the larger desig-
nated position (i.e., further to the right of the rule) over other items
from the same rule 𝑟 with smaller designated positions. If there exists
a tie from items of different grammar rules, 𝑘-max picks from each
rule the item with the highest position. The other items are dropped
altogether.3 Generally, the 𝑘-max strategy creates two ranks from a set
of tied items from different rules, with items with larger designated
positions ranked higher.

Table 3 illustrates the benefits of 𝑘-max tie breaking strategy for
plain item spectra. It resolves the respective ties over both faulty
rules’ items in favor of the actual fault locations; this allows all four

3 Note that dropping items may in principle also drop the actual faults. Our
mplementation therefore uses a variant where the subsumed items are simply
anked directly below the identified maximal items.
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Table 4
Shift item spectra, suspiciousness scores, ranks, and resolved ranks for the faulty grammar version 𝐺′

toy and rule test suite. We use the same layout as in Table 3.
Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 𝑒𝑝 𝑛𝑝 𝑒𝑓 𝑛𝑓 Tarantula Ochiai Jaccard DStar

prog :1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 0.35 =16 0.13 =17 0.29 =16
prog :1:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 0.35 =16 0.13 =17 0.29 =16
prog :1:2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 0.35 =16 0.13 =17 0.29 =16
prog :1:3 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
block:1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 0.35 =16 0.13 =17 0.29 =16
block:1:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
block:2:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 0.35 =16 0.13 =17 0.29 =16
block:2:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
block:3:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 0.35 =16 0.13 =17 0.29 =16
block:3:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
block:4:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 0.35 =16 0.13 =17 0.29 =16
block:4:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
decls:1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
decls:2:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
decl:1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
stmts:1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
stmts:2:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
stmt :1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
stmt :1:1 ✗ ✓ ✓ ✓ ✓ 4 10 1 1 0.64 17 8 0.32 37 21 0.17 16 8 0.20 37 21
stmt :2:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
stmt :2:1 ✗ ✓ 1 13 1 1 0.88 =4 0.50 =5 0.33 =4 0.50 =12
stmt :2:2 ✗ ✓ 1 13 1 1 0.88 =4 0.50 =5 0.33 =4 0.50 =12
stmt :2:3 ✗ ✓ 1 13 1 1 0.88 =4 0.50 =5 0.33 =4 0.50 =12
stmt:2:4 ✗ ✓ 1 13 1 1 0.88 =4 2 0.50 =5 =3 0.33 =4 2 0.50 =12 7
stmt :3:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
stmt :3:1 ✗ 0 14 1 1 1.00 =1 0.71 =1 0.50 =1 1.00 =1
stmt :3:2 ✗ 0 14 1 1 1.00 =1 0.71 =1 0.50 =1 1.00 =1
stmt:3:3 ✗ 0 14 1 1 1.00 =1 1 0.71 =1 1 0.50 =1 1 1.00 =1 1
stmt :4:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
stmt :5:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 14 0 2 0 0.50 =18 =9 0.35 =16 =8 0.13 =17 =9 0.29 =16 =8
expr :1:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 8 2 0 0.70 =9 0.50 =5 0.25 =9 0.67 =5
expr :1:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 8 2 0 0.70 =9 =4 0.50 =5 =3 0.25 =9 =4 0.67 =5 =3
expr :2:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 8 2 0 0.70 =9 0.50 =5 0.25 =9 0.67 =5
expr :2:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 8 2 0 0.70 =9 =4 0.50 =5 =3 0.25 =9 =4 0.67 =5 =3
expr :3:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 8 2 0 0.70 =9 =4 0.50 =5 =3 0.25 =9 =4 0.67 =5 =3
expr :4:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 8 2 0 0.70 =9 0.50 =5 0.25 =9 0.67 =5
expr :4:1 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 5 9 2 0 0.74 8 3 0.53 4 2 0.29 8 3 0.80 4 2
expr :5:0 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 6 8 2 0 0.70 =9 =4 0.50 =5 =3 0.25 =9 =4 0.67 =5 =3
metrics to pinpoint one of the faults (i.e., identify it as the single top-
ranked item). However, ties over items from different rules remain
unresolved (e.g., using Tarantula block:1:0 and stmt :2:4 remain tied).
f we again inspect the items in rank order and resolve the remaining
ies arbitrarily, we now have to look only at 2.5 positions (i.e., 3.1%
f all positions) in 3 rules before we find both faults using Tarantula
r Jaccard, 3.5 positions (4.3%) in 4 rules using Ochiai and 4 positions
4.9%) in 5 rules using DStar.

In the case of shift item spectra (see Table 4), the tie resolution
trategy is even more effective, and allows Tarantula and Jaccard to
inpoint both faults. However, we have to look at 5 positions (6.2%)
n 5 rules using Ochiai, and 7 positions (8.6%) in 7 rules using DStar
o identify the faults.

. Implementation

In order to collect the grammar spectra, we typically have to modify
he parser to log which rules it has applied. The specific modifications
ary with the general parsing technology and the specific parser; here
e describe the modifications we made to the JavaCC, ANTLR, and CUP
arser generators in order to generate parsers with the required logging
xtensions. We also sketch how synthetic spectra can be constructed
irectly from test cases.

.1. Spectra for recursive-descent LL parsers

ule spectra. Since LL parsers build the maximally viable derivation 𝛥
op-down, left-to-right, every expansion step 𝛼𝑖 ⇒𝑝𝑖 𝛼𝑖+1 ∈ 𝛥 adds the
orresponding rule 𝑝𝑖 to the spectrum, whether the derivation process
ucceeds or not. In a recursive-descent parser, each rule is implemented
y its own parsing function, and each derivation step corresponds to a
all to one of these functions. Hence, a rule-level spectrum includes the
et of parse functions entered at least once by the parser. This holds for
oth valid and invalid strings, but for an invalid string (i.e., 𝑤′ ∉ 𝐿(𝐺)),

there is at least one parse function which was entered but not exited
successfully. For an invalid string, this set of parse functions does not
necessarily include the frontier rules. Consider for example an LL(1)-
grammar with the rules 𝐴 → 𝛼𝐵𝛾 and 𝐵 → 𝛽1 ∣ … ∣ 𝛽𝑛, and a maximally
viable derivation 𝑆

𝑘
⇒∗

𝑤 𝑢𝐴𝛾 for 𝑤 = 𝑢𝑎𝑣 with 𝑎 ∉ first(𝐵). The parse
function for 𝐴 checks 𝑎 against all 𝑏 ∈ first(𝛽 ) before calling the parse
8

𝑖

function for the respective alternative of 𝐵, but since 𝑎 ∉ first(𝐵),
none of them will actually be called and added to the spectrum. We
must therefore modify the parser’s error handling routines to add the
corresponding frontier rules explicitly. Note also that an LL(1) parser
only explores a single maximally viable derivation 𝛥 for each 𝑤 ∉ 𝐿(𝐺)
and we therefore only get a single negative spectrum. For LL(𝑘) parsers
with 𝑘 > 1, the derivation may not even be maximal because the parser
may detect the syntax error before actually reaching the error location.
The collected rules may thus underapproximate the negative spectra,
especially if the definition of frontier rules is not adapted properly to
sequences of grammar symbols.

Item spectra. An extension to record item spectra is straightforward:
we only need to map the actions (i.e., matching tokens and recursive
calls to other parse functions) taken in a body of a parse function that
implements the rule back to their positional occurrence on the right
hand-side of the corresponding rule.

JavaCC. In principle, spectrum collection is a simple logging task that
can be implemented easily. For JavaCC, which generates straightfor-
ward recursive-descent LL(𝑘) parsers from a given grammar specifi-
cation, we found it indeed relatively easy to modify the generator
source code itself, and to add code for (both rule- and item-level)
grammar spectra extraction task as a side effect to parser generation.
This allows us full control and management of individual rule alter-
native resolution. JavaCC offers advanced top-down parsing features
like localized lookahead configurations, i.e., users can explicitly set a
value of 𝑘 > 1 for portions of a grammar that are not within the LL(1)
parsing capabilities, thereby making the generated parser LL(𝑘) for only
those portions. Our evaluation, however, focuses on the default LL(1)
configuration.

ANTLR. ANTLR, in contrast, generates adaptive LL(*) parsers that use
unbounded lookahead, which complicates the structure of the parse
functions, and thus in turn the spectra extraction. ANTLR provides
runtime support to automate collection of grammar spectra through
tree walkers (via generated listener and visitor interfaces). However,
this only works when ANTLR actually builds a parse tree. ANTLR’s
error recovery strategy allows it to do so in most cases, but this means
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that rules used after any error recovery will be misclassified in the
spectrum.4

As an alternative, we therefore turned off error recovery, forcing the
arser to bail out without returning a parse tree when it encounters the
irst syntax error. We then used aspect-oriented programming (Kiczales
t al., 1997) to track all calls to ANTLR’s internal enterOuterAltNum

method that sets the rule and alternative fields in the tree. In this
way, we can (in principle) extract spectra conforming to Definitions 3.1
and 3.2. In practice, however, we encountered two problems that
can cause the extracted spectra to be wrong. First, ANTLR’s adaptive
LL(*) parsing mechanism can cause it to raise a syntax error with
unbounded lookahead (typically a no viable alternative error)

ithout actually entering the parse function for the corresponding rule,
o that frontier rules may be missing. Second, ANTLR’s tracking of rule
pplications is wrong5 for grammars that contain left-recursive rules.

The adaptive LL(*) parsing mechanism also makes it difficult to
rack which tokens have been seen; our attempts at an extension to item
pectra collection were brittle and unreliable, therefore, we do not use
NTLR in our evaluation of item-level localization.

.2. Spectra for table-driven LR parsers using CUP

ule spectra. In table-driven LR parsing, there are no parse functions
hat could be tracked. Instead, a small parser core interprets the LR
ables and maintains an explicit state stack, where each state represents
set of items {𝐴𝑖 → 𝛼𝑖 ∙ 𝛽𝑖}. The application of a rule is then carried

ut by the two main operations on the stack, shift and reduce. For
valid string, we can rely simply on the reduce operation to extract

he rule spectrum, since all rule applications end successfully with a
eduction. For invalid strings, we use the reduce operation to capture
he rules applied fully to the left of the error position, i.e., at the viable
refix, but we also need to capture the partially applied rules and the
rontier rules. These are both reflected in the states that remain on the
tack when the parser encounters an error. The frontier rules are by
onstruction given by the non-kernel items of the state at the top of
he stack, while each kernel item 𝐴𝑖 → 𝛼𝑖 ∙ 𝛽𝑖 at the top of the stack
epresents a partially applied rule, with the yield of each 𝛽𝑖 describing
he prefixes of a possible right continuation.

Fig. 3 shows CUP’s parse stack when it uses the faulty grammar
′
oy to parse the test case 𝚙𝚛𝚘𝚐𝚛𝚊𝚖 𝚊 = { 𝚠𝚑𝚒𝚕𝚎 𝚊 𝚍𝚘 𝚜𝚕𝚎𝚎𝚙; } . and
ncounters the syntax error at 𝚜𝚕𝚎𝚎𝚙 . We get expr :4 as result of a
omplete rule application at the reduce operation in state 25. The non-
ernel items at the top of stack give us the frontier rules {block:1,
lock:2, block:3, block:4} while the single kernel item gives us stmt :3.

Further partially applied rules are associated with the kernel items
rom states further down on the stack; we therefore traverse the stack
nd extract these. We do not extract any rules that are associated
ith non-kernel items only because these rules have arguably not been
pplied even partially, as the designated position is at the begin of the
ule. In the example, we get the rules {prog :1, block:1, block:2, block:3,
lock:4, stmt :3, expr :1, expr :2} from this stack traversal; note that the
our block-rules are logged again.

Note also that in this example, some rules are extracted from kernel
tems 𝐴 → 𝛼 ∙ 𝛽 even though they cannot be applied in a maximally
iable 𝑘-prefix bounded derivation. Consider for example the two expr -
ules in state 50. Here, our implementation is only an approximation
f Definition 3.2, but we show in our evaluation that this does not
ecessarily lead to poor localization performance. The extraction of rule

4 Note that this requires the compilation option -DcontextSuperClass
RuleContextWithAltNum in order to get the right alternative for a
atched rule. The call to getAltNumber() returns the default value 0

therwise.
5 I.e., the call to enterOuterAltNum is missing, see the open issue
9

2222.
spectra that matches the definition precisely would require some extra
bookkeeping, as it requires further stack unwinding to filter out items
that cannot be applied in viable 𝑘-prefix bounded derivation. We leave
this for future work.

Since CUP does not provide the required logging capabilities, we
modified the table interpreter accordingly. For the rule spectra and
the plain item spectra, we added a simple stack traversal to the table
interpreter that replaces the normal error handling routine which may
modify the stack. We collect the rules in the items in each state by
analyzing CUP’s output when it builds the parse tables.

Item spectra. Plain item spectra logging as per Definitions 4.1 and
4.2 in closely follows the approach for rule spectra logging described
above; we do not need to map items left on the stack to their cor-
responding rules, but simply extract them ‘‘as they are’’. For every
successful reduction, we log all items of the corresponding reduced
rule. The definition of shift item spectra is easy to operationalize in
LR-parsers: since the parse stack represents a viable prefix, the spectra
are composed of the (kernel and non-kernel) items in the states that are
pushed on the stack.

5.3. Synthetic rule spectra

Sections 5.1 and 5.2 focused on the traditional and perhaps most
common use case of grammar development, that of developing gram-
mars to use as inputs to compiler-compiler tools. However, applications
such as grammar-based testing and fuzzing take a more general view.
Here, the grammar is not implemented directly by the SUT but serves
as an abstract model for the input domain of a system under test. In
such applications, it is often hard to extend the SUT to produce spectra
as it is processing the inputs, e.g., because no standalone parser can be
extracted.

However, we can construct synthetic (rule) spectra through automatic
test suite generation, as long as we have an oracle  (typically the
SUT itself) that can answer membership queries, i.e., decide whether
a generated test case is in the target language  = 𝐿(). More
specifically, for each positive test case 𝑤 with 𝛥 = 𝑆 ⇒∗ 𝑤 and
𝑤 ∈ 𝐿() (resp. 𝑤 ∉ 𝐿()), we have 𝑝 ∼✓ 𝑤 (resp. 𝑝 ∼✗ 𝑤) for
ll 𝑝 ∈ rules(𝛥). For negative test cases we rely on the rule mutation
lgorithm by Raselimo et al. (2019), and add the applied mutated rule
o the spectrum, i.e., if 𝛥 = 𝑆 ⇒∗ 𝛼𝐴𝛽, 𝑟 = 𝐴 → 𝛾 ∈ 𝑃 with a mutation
′ = 𝐴 → 𝛾 ′, 𝛥′ = 𝛼𝛾 ′𝛽 ⇒∗ 𝑤, and 𝑤 ∈ 𝐿(), then we have 𝑝 ∼✗ 𝑤 for
ll 𝑝 ∈ rules(𝛥) ∪ rules(𝛥′) ∪ {𝑟} (and similarly for passing negative tests
∉ 𝐿()).

. Research questions

We evaluate our approaches under a number of different scenar-
os, including the use of different parsing techniques, test suites, and
anking metrics. Overall, we are trying to answer six main research
uestions discussed in more detail below.

In the first set of experiments, we evaluate our method over a large
umber of medium-sized single fault grammars, which are constructed
rom a common grammar by fault seeding. Note that fault seeding is
idely used in SFL evaluation (e.g., Abreu, 2009; Wen et al., 2011)
ecause it produces a large number of faulty subjects with known error
ocations. This is the largest set of experiments in our evaluation. We
se this set of experiments to answer four of the six research questions.

First, as a baseline, we investigate the effectiveness of rule-level
ault localization. We analyze in detail whether the different applied
arsing techniques, test suites, and ranking metrics have an effect on
he effectiveness of the technique.

Q1 How effective are fault localization techniques based on rule
spectra in identifying seeded single faults in grammars?
Then, we investigate the effectiveness of synthetic spectra.

https://github.com/antlr/antlr4/issues/2222
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Fig. 3. CUP parse stack when encountering the syntax error while parsing the test case program a = {while a do sleep;}. with 𝐺′
oy . State 25 (shown in gray) is

opped off the stack after reduction.
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Q2 How effective are fault localization techniques based on synthetic
spectra in identifying seeded single faults?

Next, we evaluate whether our method remains effective when we
witch to item spectra for a more precise localization of faults at the
evel of individual symbols, and whether the switch from rule spectra
oes indeed improve its accuracy.

Q3 How effective are fault localization techniques based on item
spectra in identifying seeded single faults in grammars at the level
of individual symbols?

Q4 Does the use of item spectra improve the localization accuracy?

In the second set of experiments, we look at grammars submitted
y students enrolled in compiler engineering courses. Such grammars
ontain real and often multiple faults; however, SFL is based on a
ingle fault assumption, and SFL methods can be misled by interactions
etween multiple faults (Abreu et al., 2009; Xue and Namin, 2013). We
nvestigate whether this is the case here.

Q5 How effective are fault localization techniques in identifying real
faults in grammars that possibly contain multiple faults?
10

i

In the final experiment, we address the scalability of our approach
y applying it to a large, production-quality grammar, specifically the
NTLR4 SQLite grammar.

Q6 Does our approach remain effective for large grammars?

. Localization for seeded faults

.1. Experimental setup

ase grammars. We used the grammar of a small artificial program-
ing language called SIMPL as the basis for these experiments. SIMPL
as originally designed for a second-year computer architecture course
t Stellenbosch University, where students were given an LL(1) gram-
ar for SIMPL in EBNF format, and had to implement a recursive-
escent parser. We manually eliminated the EBNF operators for this
rammar by adding new BNF rules, in order to simplify the mutation
rocess.

For ANTLR (v4.7.2), we left-factorized the BNF version and elim-
nated left-recursive rules to minimize the effect of its adaptive LL(*)
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parsing mechanism, which can lead to imprecise spectra (see the dis-
cussion in Section 5.1). The resulting grammar contains 84 rules,
42 non-terminal symbols, and 47 terminal symbols.

JavaCC (v7.0.5) also requires left-factorization and left-recursion
elimination; we used the ANTLR version as a starting point, but used
slightly different representation of inner alternatives. This version con-
tains 93 rules, 49 non-terminal symbols, and 47 terminal symbols,
giving rise to 242 items.

CUP (v0.11b) requires the elimination of the EBNF extensions; this
version was developed independently by a student assistant directly
from the EBNF version. It contains 80 rules, 32 non-terminal symbols,
and 47 terminal symbols, giving rise to 258 items.

The parsers generated from the three respective baseline grammars
pass all tests in the different test suites (see below).

Mutation operators. We mutated the grammars by blindly applying
ndividual symbol edit operations (deletion, insertion, substitution, and
ransposition) at every position on the right-hand side of every rule
f the grammars. We also used two more complex mutation operators
hat take the entire rules into account rather than individual grammar
ymbols. More specifically, we introduce an 𝜀-production to every non-

nullable non-terminal, and we blindly delete alternatives for every rule.
We only applied a single mutation to derive each mutant, to ensure
that each mutant contains at most one fault. We discarded all grammar
mutants where the parser generator fails to produce a parser (e.g., by
introducing indirect left-recursion in an ANTLR grammar). This leaves
us with 30930 mutants for ANTLR, 36497 mutants for JavaCC, and
26548 mutants for CUP.

Test suites. We then executed each mutant on four different test suites
derived from the original EBNF form of the SIMPL grammar. Note that
our test suite generation tool gtestr internally eliminates those EBNF
operator as well. The first two test suites, rule and cdrc, contain only
positive test cases. They are constructed according to the rule and cdrc
coverage criteria (Lämmel, 2001), respectively, and contain 43 and 86
test cases, respectively. Note that rule is a proper subset of cdrc. large
is very large, varied test suite that contains 2964 positive tests and
32157 negative tests. The positive tests are constructed according to
four different coverage criteria (bfs2, step6, and derivable and adjacent
pair coverage, respectively) developed by van Heerden et al. (2020)
to produce diverse test suites. The negative tests are constructed using
token mutation over the rule test suite, and using mutation of the rules
themselves (Raselimo et al., 2019). instructor refers to the test suite
the instructor used to grade the student submissions. It comprises 20
positive and 61 negative tests.

Mutant selection. All widely used SFL metrics require that the test suite
contains at least one passing and one failing test in order to properly
localize faults (cf. Section 2). For any given test suite, we therefore
only select those mutants as basis for our evaluation where this prop-
erty holds. Moreover, for ANTLR we do not select mutants where
failing tests require the application of a left-recursive rule, because
the computed grammar spectra are imprecise (see the discussion in
Section 5.1). In analogy to the terminology used in mutation testing,
we call the selected mutants killed.

Spectrum extraction and ranking. We extracted the rule-level spectra
for all target systems as described in Section 5. Note CUP’s rule-
level spectra approximate Definition 3.2 and that ANTLR’s adaptive
LL(*) parsing mechanism interferes with the spectrum extraction, as
described in Section 5.1. We used both methods discussed there, and
denote the version without error recover in the following by ANTLR*.

For JavaCC we followed the approach described in Section 5.1 to
extract item-level spectra; we denote this version by JavaCC𝚒𝚝𝚎𝚖. We
did not extract item-level spectra for ANTLR, due to the stability issues
discussed in Section 5.1. For CUP, we extracted both plain item spectra
11

(CUP𝚙𝚕𝚊𝚒𝚗) and shift item spectra (CUP𝚜𝚑𝚒𝚏𝚝).
For each grammar mutant killed by the test suite we ordered the
rules by the scores produced by each of the ranking metrics and
computed the mutated rule’s predicted rank. In the rule-level spectra,
we resolved ties using the middle rank, as discussed in Section 2. In
the symbol-level spectra, we also used the 𝑘-max tie breaking strategy
described in Section 4.4.

We finally use an item-level extension of the rule spectra where,
given a rule 𝑟 with assigned suspiciousness score 𝑠, we replace 𝑟 by a
set of all possible items 𝑟∙ that can be derived from 𝑟 and assign 𝑠 to each
item of 𝑟. For example, consider the worked example in Section 4.1: the
rule stmt → 𝚜𝚕𝚎𝚎𝚙 from the grammar 𝐺′

oy which has a Tarantula score
of 0.64 is replaced by its two items stmt → ∙ 𝚜𝚕𝚎𝚎𝚙 and stmt → 𝚜𝚕𝚎𝚎𝚙 ∙,
which both get the Tarantula score of 0.64. We then re-rank these
reconstructed items using the mid-rank tie breaking strategy.

Note that we used the location at which we applied the mutation
operation as ‘‘true’’ fault location. However, as described in Section 7.2,
the proper ‘‘blame assignment’’ is not always as clear, in particular
when the mutations impact the first-sets of rules. This can impact the
quality of the predictions.

Synthetic spectra. We used the SIMPL grammar mutants containing
individual symbol mutations (but not the more complex rule-level mu-
tations) for ANTLR to generate rule, cdrc, and large test suites from each
mutant in order to answer RQ2. The ANTLR grammar from which these
mutants were derived acts as the ground-truth grammar (i.e., oracle
) and determines the outcome of each test case derived from these
mutants. Our grammar-based test case generator tool gtestr contains
a converter that translates ANTLR grammars to their equivalent gtestr
grammars. We discarded mutants with unreachable non-terminal sym-
bols and those that contain symbols for which gtestr cannot compute
the yield. This leaves us with 27894 mutants.

7.2. Rule-level fault localization of seeded faults (RQ1)

Fig. 4 shows the rule-level results of the fault seeding experiments
in a series of boxplots. Each boxplot summarizes the ranks predicted
by the corresponding metric for the mutated (i.e., faulty) rules, given a
specific parsing method and test suite. The boxes show the Q3/Q1 in-
terquartile range of the ranks, i.e., the upper end of the box corresponds
to the 75th percentile (i.e., in 75% of the cases the faulty rule is ranked
better than the indicated value) while its lower end corresponds to the
25% percentile. The median is indicated by a dotted line across the
box. The whiskers extend from the 5th to the 95th percentile. Table 5
contains more details.

While the details change with the applied parsing technology and
ranking metric, and the underlying test suite, the boxplots and Table 5
show overall positive results. On average, the metrics rank the faulty
rules at ∼22% of all rules, with better results for the large test suite
(∼15%) and worse results for the instructor test suite (∼31%). The
median is typically at 2.5%–5% (except Tarantula under instructor at
∼17%), and so much smaller than the mean. Hence, in more than half
of the cases, the metrics rank the faulty rule within the top five rules.
Furthermore, in 10%–40% of the cases they correctly pinpoint it, in
about 15%–60% the fault is localized within the top three rules and in
up to 65% of the cases the fault is found within the top five rules.

We can make a few high-level observations. First, fault localization
works better for JavaCC than for both ANTLR and CUP: for JavaCC
we universally achieve lower mean and median values, independent of
the test suite and the ranking metric, and typically pinpoint a higher
fraction of the observed faults (with Tarantula the only metric with
mixed results that are sometimes better for CUP than the other tools).
The Top1/Top3/Top5 values also seem to be in favor of JavaCC, with
ANTLR giving us slightly lower values across the board.

Second, ANTLR’s error correction introduces noise into the spectra
that compromises the quality of the fault localization. ANTLR with bail-

∗
out on error uniformly produces better results than ANTLR with error
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Fig. 4. Rule-level results of fault seeding experiments over SIMPL grammar. Columns show results for different parsers, left to right: JavaCC, ANTLR (without error correction),
ANTLR∗ (with default error correction), and CUP. Rows show results for different test suites, top to bottom: rule (43 positive tests), cdrc (86 positive tests), large (2964 positive
ests, 32157 negative tests), instructor (20 positive tests, 41 negative tests). The boxes show the Q3/Q1 interquartile range of the ranks, thee median is indicated by a dotted line
cross the box, whiskers extend from the 5th to the 95th percentile. Table 5 contains more details.
Table 5
Detailed rule-level results of fault seeding experiments over SIMPL grammars. 𝑥̃ and 𝑥̄ denote the median and mean rank, respectively, of the seeded fault. #1 denotes the number
f cases where the metric ranked the seeded fault as most suspicious, #3 and #5 denote the number of cases where the seeded fault was ranked in the Top 3 and Top 5,
espectively. The first four blocks contain the main results to answer RQ1, the next three blocks demonstrate the results for position-one mutants. The final block contains the
esults for synthetic spectra used to answer RQ2.

Killed Tarantula Ochiai Jaccard DStar

𝑥̃ 𝑥̄ #1 #3 #5 𝑥̃ 𝑥̄ #1 #3 #5 𝑥̃ 𝑥̄ #1 #3 #5 𝑥̃ 𝑥̄ #1 #3 #5

ANTLR rule 24 385 3.6 22.7 6 235 12 656 13 653 1.8 21.8 7 166 14 890 15 081 1.8 21.8 7 169 14 891 15 082 1.8 21.8 7 160 14 880 15 077
(30930) cdrc 24 545 3.0 22.8 6 562 12 732 13 824 1.8 22.1 7 276 15 041 15 281 1.8 22.2 7 277 15 041 15 279 1.8 22.2 7 270 15 028 15 173

large 30 629 5.4 19.1 8 384 13 225 16 359 3.6 19.1 8 811 15 397 17 065 3.6 18.9 8 701 15 791 17 732 4.8 21.5 8 564 14 882 16 499
instr 26 282 15.1 32.9 4 090 7 601 10 390 2.4 28.6 7 062 14 143 14 930 3.0 28.8 6 878 13 934 14 723 2.4 28.6 7 058 14 472 14 929

ANTLR∗ rule 24 349 4.2 22.7 5 718 11 284 13 618 2.4 21.4 6 780 15 199 15 442 2.4 21.4 6 781 15 200 15 394 2.4 21.4 6 760 15 148 15 378
cdrc 24 508 4.2 22.7 5 902 11 530 13 928 2.4 21.7 6 909 15 334 15 678 2.4 21.7 6 909 15 320 15 625 2.4 21.7 6 900 15 316 15 549
large 30 590 4.5 19.2 8 598 13 873 18 008 4.2 19.7 7 354 14 405 17 684 4.2 19.4 7 861 14 138 18 023 4.8 22.0 7 140 13 865 16 940
instr 26 211 22.9 39.7 2 170 4 837 6 897 7.2 31.0 4 631 10 360 11 973 7.2 31.3 4 543 10 048 11 574 7.2 30.9 4 956 10 895 11 980

JavaCC rule 28 463 3.8 17.9 6 987 14 012 17 761 1.6 16.5 8 659 19 350 19 774 1.6 16.5 8 657 19 348 19 770 1.6 16.6 8 646 19 217 19 695
(36497) cdrc 29 138 2.7 16.5 8 673 15 614 19 021 1.6 15.2 10 401 20 135 20 755 1.6 15.2 10 401 20 134 20 754 1.6 15.5 9 817 19 494 20 200

large 32 383 3.2 12.5 10 523 16 857 19 474 2.2 9.0 12 128 20 842 23 338 2.2 8.6 12 343 20 996 23 830 2.2 9.7 12 048 21 041 23 347
instr 30 864 17.7 32.4 2 448 7 035 9 711 4.3 27.8 6 378 14 240 16 162 4.8 26.9 6 274 14 015 16 083 4.3 27.7 6 350 14 198 16 117

CUP rule 23 564 3.2 24.4 7 789 12 385 13 400 2.5 23.7 9 909 13 881 13 925 2.5 23.7 9 909 13 882 13 925 2.5 23.7 9 909 13 870 13 913
(26548) cdrc 25 336 3.2 24.6 8 378 13 502 14 588 1.9 24.0 10 502 14 919 14 972 1.9 24.0 10 502 14 921 14 972 1.9 24.0 10 500 14 908 14 954

large 26 487 3.8 11.9 8 653 15 505 18 706 2.5 14.0 10 132 15 030 16 617 3.8 14.2 9 359 14 947 17 667 3.8 15.9 10 279 14 603 15 979
instr 25 459 13.9 35.6 2 702 7 239 9 829 4.4 32.8 6 890 11 497 13 217 5.1 33.2 6 505 10 646 13 030 3.8 32.7 7 429 13 001 13 858

ANTLR rule – 55.4 48.8 145 1 095 1 297 55.4 49.3 170 875 1 042 55.4 49.3 173 876 1 043 55.4 49.3 164 868 1 038
cdrc – 56.5 49.9 206 1 028 1 241 56.5 50.3 207 906 1 088 56.5 50.4 208 906 1,086 56.5 50.5 201 893 980
large – 8.3 23.5 3 003 4 529 5 679 31.0 32.7 1 547 2 460 2 907 22.0 31.4 1 691 2 946 3 656 38.1 38.7 1 095 1 894 2 327
instr – 79.8 62.0 307 1 042 1 414 79.8 63.3 387 1 176 1 236 79.8 63.3 380 1 175 1 240 79.8 63.8 369 1 139 1 182

JAVACC rule – 53.8 37.8 940 2 511 3 143 53.8 37.2 1 706 3 041 3 361 53.8 37.2 1 704 3 039 3 357 53.8 37.4 1 693 2 908 3 282
cdrc – 54.8 34.5 2 231 3 437 4 037 54.8 34.1 2 793 3 677 3 987 54.8 34.1 2 793 3 677 3 987 54.8 34.7 2 209 3 036 3 432
large – 4.3 15.5 4 172 6 163 7 393 6.5 17.5 4 321 5 879 6 492 3.2 14.7 4 900 6 921 7 693 8.1 19.5 4 122 5 661 6 141
instr – 59.1 53.6 179 1 235 1 794 61.8 52.4 947 2 311 2 737 61.8 52.2 920 2 290 2 595 62.4 52.5 914 2 244 2 651

CUP rule – 54.4 53.6 305 394 435 54.4 53.7 296 387 420 54.4 53.7 296 388 420 54.4 53.7 296 379 418
cdrc – 55.1 55.2 342 429 458 55.1 55.3 327 404 445 55.1 55.3 327 406 445 55.1 55.3 327 401 433
large – 6.3 19.9 2 210 3 885 4 656 27.2 29.8 1 067 1 587 1 955 19.0 28.0 1 242 2 567 3 248 31.6 34.3 813 1 022 1 251
instr – 81.0 72.9 263 436 501 81.0 73.5 324 435 461 81.0 73.6 327 436 460 81.0 73.7 322 431 456

Synthetic rule 23 563 1.8 5.1 9 894 14 805 20 197 1.2 2.0 13 012 22 772 23 085 1.2 2.0 13 012 22 772 23 085 1.2 1.9 13 014 22 780 23 105
(27894) cdrc 25 756 1.8 4.7 10 761 17 284 22 141 1.2 2.1 13 582 24 189 24 978 1.2 2.1 13 567 24 170 24 964 1.2 2.1 13 583 24 212 24 995

large 27 538 2.4 9.0 12 866 19 083 22 058 1.2 2.8 16 482 24 187 25 296 1.2 3.3 15 766 22 972 24 727 1.2 2.7 16 625 24 223 25 320
12
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Table 6
Detailed item-level results of fault seeding experiments over SIMPL grammars. The left-most column gives the tie resolution mechanism (see Section 4.4); rule extension denotes
the item-level extension of rule-level spectra (see Section 7.1). See Table 5 for numbers of generated and killed mutants, respectively, and for further notation details.

Tarantula Ochiai Jaccard DStar

𝑥̃ 𝑥̄ #1 #3 #5 𝑥̃ 𝑥̄ #1 #3 #5 𝑥̃ 𝑥̄ #1 #3 #5 𝑥̃ 𝑥̄ #1 #3 #5

Middle rank

JavaCC𝚒𝚝𝚎𝚖 rule 2.9 20.2 128 9 941 13 559 1.4 19.5 211 13 645 16 456 1.4 19.5 212 13 645 16 456 1.4 19.6 211 13 577 16 382
cdrc 2.7 20.5 186 10 386 13 841 1.4 19.9 268 14 000 17 058 1.4 19.9 269 14 001 17 058 1.4 19.9 259 13 882 16 933
large 1.7 8.3 5 228 14 757 18 016 0.8 7.5 10 162 20 786 22 220 0.8 7.0 9 919 20 924 22 762 0.6 8.5 10 205 21 142 22 176
instr 8.5 26.7 807 5 686 7 980 1.2 23.6 4 613 16 578 18 508 1.2 23.7 4 591 16 307 18 243 1.2 23.7 4 600 16 559 18 570

CUP𝚙𝚕𝚊𝚒𝚗 rule 3.9 14.2 3 412 7 367 8 790 3.3 13.2 4 083 8 596 10 035 3.3 13.2 4 083 8 595 10 033 3.3 13.1 4 083 8 596 10 035
cdrc 3.9 13.9 3 799 7 910 9 811 2.9 12.8 4 498 9 191 11 397 3.1 12.9 4 498 9 189 10 970 2.9 12.8 4 498 9 191 11 397
large 5.2 13.5 1 718 6 371 8 707 2.5 10.1 6 047 9 611 12 545 3.9 12.1 5 957 9 006 11 380 1.9 10.5 6 670 10 513 13 482
instr 11.4 23.9 1 459 3 286 5 269 4.7 16.6 4 367 8 232 10 272 4.7 18.4 4 364 8 003 10 203 3.9 16.1 4 428 8 429 10 445

CUP𝚜𝚑𝚒𝚏𝚝 rule 2.1 20.0 3 126 8 874 11 572 1.6 19.3 3 469 10 843 13 139 1.6 19.3 3 469 10 843 13 138 1.6 19.3 3 469 10 843 13 139
cdrc 2.1 20.1 3 954 9 975 12 624 1.4 19.4 4511 12 079 14 499 1.4 19.5 4 511 12 079 14 498 1.4 19.5 4 511 12 077 14 498
large 4.3 13.8 2 082 7 669 10 214 1.9 12.5 8 842 12 304 13 615 2.3 12.8 8 086 10 678 12 824 1.6 12.9 10 151 12 633 13 584
instr 12.2 29.8 1 173 4 021 5 353 3.3 26.4 4 029 9 250 11 323 3.5 26.4 4 032 9 165 11 013 3.1 26.4 4 056 9 535 11 558

𝑘-max

JavaCC𝚒𝚝𝚎𝚖 rule 1.9 19.6 5 919 12 082 15 553 0.8 19.1 6 935 16 848 17 461 0.8 19.1 6 936 16 848 17 460 0.8 19.2 6 935 16 780 17 399
cdrc 1.7 19.9 6 247 12 687 15 980 0.8 19.5 7 575 17 265 17 886 0.8 19.5 7 576 17 266 17 886 0.8 19.5 7 566 17 167 17 770
large 1.7 8.2 7 691 15 142 18 232 0.6 7.4 13 883 20 916 22 182 0.6 6.9 13 586 20 992 22 695 0.6 8.4 14 046 21 144 22 140
instr 7.6 26.3 2 856 7 017 8 959 0.8 23.3 9 714 17 654 18 510 0.8 23.4 9 683 17 285 18 147 0.8 23.4 9 712 17 589 18 413

CUP𝚙𝚕𝚊𝚒𝚗 rule 2.1 13.4 5 057 8 361 11 505 1.4 12.6 6 007 9 394 13 345 1.4 12.7 6 007 9 393 13 343 1.4 12.6 6 007 9 394 13 345
cdrc 1.7 13.1 5 512 9 235 12 811 1.4 12.2 6 499 10 337 14 923 1.4 12.3 6 499 10 335 14 496 1.4 12.3 6 499 10 337 14 923
large 5.2 13.5 1 801 6 427 8 711 2.5 10.1 6 303 9 740 12 566 3.9 12.1 6 199 9 054 11 404 1.9 10.5 6 941 10 520 13 494
instr 10.9 23.6 2 022 5 011 6 867 4.1 16.4 5 660 9 694 10 877 4.1 18.2 5 655 9 580 10 810 3.7 15.9 5 725 9 889 11 049

CUP𝚜𝚑𝚒𝚏𝚝 rule 1.0 19.1 5 447 13 257 14 034 0.8 18.8 5 930 14 431 14 997 0.8 18.8 5 930 14 431 14 996 0.8 18.8 5 930 14 431 14 997
cdrc 0.8 19.2 7 999 14 314 15 295 0.8 19.0 8 799 15 488 16 041 0.8 19.0 8 799 15 486 16 038 0.8 19.0 8 799 15 485 16 037
large 4.1 13.6 2 168 7 926 10 360 1.6 12.2 9 119 12 449 13 784 2.3 12.7 8 341 10 891 12 882 1.6 12.8 10 601 12 684 13 656
instr 12.0 29.4 1 935 5 438 7 521 3.1 26.1 5 734 10 845 12 191 3.1 26.1 5 732 10 764 11 880 2.7 26.1 5 763 11 133 12 425

Rule extension

JavaCC rule 3.7 17.9 14 6 475 10 182 2.1 16.5 23 8 608 14 460 2.1 16.5 23 8 608 14 460 2.1 16.5 23 8 593 14 448
cdrc 3.1 16.4 25 8 271 11 787 1.9 15.2 33 10 298 15 537 1.9 15.2 33 10 298 15 536 2.1 15.5 29 9 712 14 941
large 3.1 12.1 37 9 873 13 241 2.1 8.9 46 11 437 16 550 2.1 8.4 48 11 552 16 498 2.1 9.7 45 11 304 16 484
instr 17.1 32.0 7 1 796 4 258 4.5 27.3 16 5 494 11 568 4.5 26.6 16 5 381 11 080 4.5 27.2 16 5 543 11 611

CUP rule 4.5 24.8 3 4 889 6 784 3.5 24.2 4 6 202 8 990 3.5 24.2 4 6 202 8 990 3.5 24.2 4 6 202 8 990
cdrc 4.5 25.1 6 5 465 7 469 3.3 24.5 7 6 785 9 522 3.3 24.5 7 6 785 9 522 3.3 24.5 7 6 783 9 519
large 3.1 11.5 34 6 321 10 325 3.7 14.9 38 6971 11 098 3.5 14.8 37 6 446 10 654 3.7 17.1 37 6 992 11 090
instr 15.1 35.9 25 2 023 3 216 7.6 33.3 34 5 438 7 919 7.8 33.7 33 5 051 7 536 6.4 33.1 33 5 683 8 408
correction, although the differences are typically smaller than those to
JavaCC and CUP.

Third, the difference between Ochiai, Jaccard, and DStar is neg-
ligible, but all three outperform Tarantula. The only exception is for
the large test suite, where Tarantula produces the tightest interquartile
range and the lowest mean (although not the lowest median nor the
highest fraction of top-ranked faults). This follows the observation that
Tarantula does not get particularly overwhelmed by a high count of
failing tests compared to the other three metrics, which under such
scenarios typically assign the highest rank to the non-faulty rules
(mostly dominating ones, e.g., the start rule) executed in most failing
tests.

Fourth, the localization performance depends strongly on the size
and variance of the test suite. The difference of the results between
the rule and cdrc test suites is marginal, despite the fact that that they
contain very similar test cases and, in fact, cdrc even includes rule.
In contrast, both of them induce substantially better results than the
manually constructed instructor test suite, whose size is between both of
hem. This also indicates that it is hard to manually construct test suites
hat are well suited for fault localization. large has the highest fraction
f localized faults compared to other test suites, and the smallest mean
but typically not median) values.

We can thus answer our first research question.

RQ1: Our fault localization based on rule spectra is effective in
identifying faults in fault-seeded grammars. In more than half of
the cases, the fault is localized within the top three rules. In about
10%–30% of the cases, the fault is uniquely identified as the most
suspicious rule. We observe also that Ochiai, Jaccard and DStar, by
and large, produce identical rankings, and outperform Tarantula.
13
Results for position-one mutants. The application of a rule, no matter the
parsing technology used, heavily relies on lookahead symbols. These
lookahead tokens are derived from the first and follow sets, at least in
the case of our target LL(1) and LALR(1) parsers. Therefore, it becomes
a challenge to correctly localize faults where the first symbol in a rule’s
right-hand side has been mutated (so called position-one mutants) as
the mutated rules may never be executed. The results from the second
block of Table 5 demonstrate how hard it indeed is to correctly localize
these mutants. Specifically, in subject grammars in which the mutation
operators have been applied to the first position on the right hand-
side of a rule, the median rank of the faults range between 50%–82%,
i.e., the localization performance can differ by 20 percentage points
between mutants at the first and other symbols. Moreover, the average
ranks are lower than median ranks, which means there are only a few
cases where the fault is localized in fewer than half of the rules. The
large test suite is an exception, with lower median values (less than
27%) because the generation of the negative test cases contained in
large in part follow similar mutation strategies used to seed faults in
the subject grammars.

However, we found that errors in such positions are relatively rare
in practice, perhaps due to the large effect they have on the behavior
of the parser, which causes grammar developers to realize these errors
quickly.

7.3. Synthetic rule-level localization of seeded faults (RQ2)

The third block in Table 5 shows the results of our approach when
using synthetic spectra derived directly from the test cases constructed
from a grammar under test. We see that our approach remains effective
and, in fact, produces even better results. First, on average, the faulty
rule is ranked in ∼5% of the rules, with a slightly worse figure (9.0%)
for Tarantula under the large test suite. The median range of 1.2%–

2.8% means that in half of the cases, we only need to look within the
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Fig. 5. Item-level localization results over fault-seeded SIMPL grammars using JavaCC𝚒𝚝𝚎𝚖. item refers to originally extracted spectra using the 𝑘-max tie resolution strategy, rule
o the item-level extension of the rule spectra (see Section 7.1). See Fig. 4 for more details.
op three rules to find the faulty rule. Second, interestingly, the fault is
niquely localized in at least 40% of the cases and in ∼85% of the cases
he prediction is within the top five rules. Third, as before, Tarantula
erforms worse than the three other metrics, with higher median and
ean ranks and lower Top1/Top3/Top5 values. Finally, we do not run

nto the first position mutants issues here because all the rules are
ffectively and fully reduced during the generation of individual test
ases.

RQ2: Our localization based on synthetic rule spectra is more ef-
fective in identifying single faults in mutants than using grammar
spectra extracted from parsers. The fault is found within the top five
rules in almost all cases.

7.4. Item-level localization of seeded faults (RQ3)

Table 6 presents our experimental results for the item-level localiza-
tion in three blocks. The first block shows the results using the default
ranking assigned to items based on the suspiciousness scores computed
by the different metrics. Tied items, i.e., items with the same suspi-
ciousness scores, are assigned a rank using the mid-rank tie breaking
mechanism. The second block summarizes results using the 𝑘-max tie
breaking strategy (see Section 4.4). In both cases, CUP𝚜𝚑𝚒𝚏𝚝 refers to the
results based on shift item spectra (see Definition 4.3) while CUP𝚙𝚕𝚊𝚒𝚗

efers to the results for plain item spectra (see Definitions 4.1 and 4.2).
The third block enables a fair comparison between item- and rule-

evel localization. This comparison is based on the fact that when given
correctly predicted fault using rule-level fault localization, we still

eed to look (in the worst case) at all the symbols at the right-hand side
f a faulty rule to find the offending symbol(s). On average, we need
o inspect half of the symbols in the rule to identify the exact fault
ocation. We can therefore extend the rule-level spectra to item-level
pectra, as described in Section 7.1.

xperimental results. We first focus on the configuration without spe-
ialized tie breaking, as shown in the first block of Table 6. We observe
he following results. First, as in the rule-level localization, Ochiai,
accard, and DStar outperform Tarantula, here even for all test suites
14

nd parsing technologies: they give lower mean and median values, and
identify more faults. For the smaller test suites (rule, cdrc, and instr),
the differences between Ochiai, Jaccard, and DStar are marginal; for
the large test suite, Jaccard slightly outperforms Ochiai and DStar for
JavaCC but underperforms for both versions of CUP. Second, the mixed
test suite large yields better results than the other three test suites. Using
large, we are able to uniquely localize the seeded fault in 6%–32%
of the cases, and in 24%–65% and 32%–70% of the cases the fault
is localized in the Top3 and Top5 of the ranked items, respectively.
Third, the choice of the parsing technology does have an effect on
fault localization. With the exception of low Top1 values, item-level
localization appears to be more effective in JavaCC𝚒𝚝𝚎𝚖 than in both
CUP𝚙𝚕𝚊𝚒𝚗 and CUP𝚜𝚑𝚒𝚏𝚝. With JavaCC𝚒𝚝𝚎𝚖, the fault is typically located
at a median rank of 0.6%–8.5%, hence, in more than half of the
cases the fault is correctly predicted within the top five items. Another
interesting insight, and perhaps hardly surprising, is that we cannot tell
apart effectiveness of fault localization based on plain and shift item
spectra in the LR case. In particular, CUP𝚜𝚑𝚒𝚏𝚝 finds more faults within
the top five items but has slightly worse mean ranks across the board
than CUP𝚙𝚕𝚊𝚒𝚗.

Tie breaking. The second block of Table 6 summarizes the fault local-
ization results, where we break ties using 𝑘-max strategy that picks the
item with the highest position among tied items from the same rule. In
general, in most cases we see an increase in effectiveness — the median
and mean ranks are improved and Top1/Top3/Top5 numbers increase
substantially; in particular, we see up to 30× increase in the number
of seeded faults that are pinpointed exactly (i.e., Top1) when we are
using small rule and cdrc test suites, and still a 2× increase for instr. The
relative performance of the different metrics, however, remains largely
unaffected.

RQ3: Our fault localization method based on item spectra remains
effective in identifying single faults in grammars with seeded faults.
The tie breaking mechanism that prefers the item with the highest
position over other items from the same rule improves the results
substantially.
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Fig. 6. Item-level localization results over fault-seeded SIMPL grammars using CUP𝚙𝚕𝚊𝚒𝚗. See Fig. 5 for more details.
Fig. 7. Item-level localization results over fault-seeded SIMPL grammars using CUP𝚜𝚑𝚒𝚏𝚝. See Fig. 5 for more details.
.5. Rule- vs item-level fault localization (RQ4)

Figs. 5, 6, and 7 summarize the comparison of item- and rule-level
ault localization as a series of paired box plots. Each pair contains
anks from item spectra and ranks from rule spectra computed using
ach ranking metric over each test suite on each of the two parsing
echanisms. We derive the comparison from the second block (𝑘-max)

and the third block (rule extension) from Table 6.
While results differ with the applied parsing mechanism and the

underlying test suite, it is easily observable that the 𝑘-max strategy
performs better than a simple extension of rule-level localization. This
is made evident by better median (0.6%–10.9% vs 2.1%–17.2%) and
15
mean ranks. However, note that for JavaCC the rule extension gives
more uniform results, with better 95th and 75th percentile values.

RQ4: Item-level localization with the specialized tie breaking mech-
anism outperforms the simplistic extension of rule-level localization
where all positions within a rule are assigned the same score.

8. Localization of real faults (RQ5)

In order to see how well our method performs over grammars
with multiple real faults we used grammars students submitted in
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Table 7
Results of iterative fault localization in student grammars and manual repair. #fail shows the number of failing test cases in an iteration and rank shows rank of the manually
repaired rule.

# Language Type Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7

#Fail Rank #Fail Rank #Fail Rank #Fail Rank #Fail Rank #Fail Rank #Fail Rank

1 SIMPL CUP 557 1.5 254 1 131 1 98 1
2 SIMPL CUP 206 2 95 2
3 SIMPL CUP 498 1 40 1
4 SIMPL CUP 305 5 48 1
5 SIMPL CUP 854 3 854 1 295 1 139 1 48 2 19 1 5 1
6 SIMPL CUP 48 1
7 Blaise ANTLR 567 2 4 1 2 1
8 Blaise ANTLR 1082 1 535 3 7213 1 358 1 43 1 2 1
9 Blaise ANTLR 4 3 2 2
10 Blaise ANTLR 1068 1 4 2 2 1
11 Blaise ANTLR 38 4 3 1
12 Blaise ANTLR 654 1 1 1
13 Blaise ANTLR 4 2 2 1
14 SIMPL ANTLR 555 1 170 1 47 2 1 1
15 SIMPL ANTLR 37 4.5 1 1.5
16 SIMPL ANTLR 361 3 46 1
17 SIMPL ANTLR 396 1.5 117 2 81 2 47 1 1 1.5
18 SIMPL ANTLR 46 2
19 SIMPL ANTLR 356 1 233 2 1 1
20 SIMPL ANTLR 1 1
g

assignments of various compiler engineering courses. Unsurprisingly,
these grammars contain many errors.

Experimental setup. We used two languages, SIMPL (which we also used
or the fault seeding experiments in Section 7), and Blaise, another arti-
icial teaching language of similar syntactic complexity: the instructor’s
BNF version of the Blaise grammar has 38 non-terminals, 40 terminals
nd 75 rules.

For SIMPL, we used the same positive test cases as in the large
est suite in Section 7. For Blaise, we generated tests using the same
echanism; this comprises 7280 positive and 9119 negative test cases.

Both languages were used in compiler engineering courses at the
niversity of Southampton and at Stellenbosch University. In one as-

ignment, the students were given the same EBNF as in the computer
rchitecture course (in fact, most students had already been exposed
o SIMPL in that course), and were asked in two different assignments
o use ANTLR and a LALR(1) parser generator of their choice, respec-
ively, to develop parsers for SIMPL. We randomly picked ten ANTLR
ubmissions, from which we discarded two that passed all tests and
ne that did not produce a compilable parser. We picked all ten CUP
ubmissions, from which we discarded three that passed all tests and
ne that passed none. For Blaise, the students were given a textual
anguage description and a small set of short example programs and
sked to develop an ANTLR grammar and parser for the language. We
andomly picked nine Blaise grammars from 110 submissions, from
hich we also discarded two that pass all tests. This left us with 20

ubject grammars.
We then followed an iterative one-bug-at-a-time (OBA) debugging

echnique (Zakari et al., 2020) where we focus our attention on the first
iscovered fault, fix this fault and then re-localize. In each iteration,
e used the Ochiai metric to compute the suspiciousness scores of the

ules. We manually examined the rules in rank order and used our
nderstanding of the ‘‘true’’ languages to identify and repair faulty
ules. In each iteration, we only repaired the top-ranked faulty rule;
ote that we made repairs in the lexer as well. After each repair, we
epeated the process, until the grammar under test passed all test cases.

xperimental results. Table 7 summarizes the results of our evaluation
ver student grammars. For each iteration, we show the number of test
ases failed in the respective grammar version, and the rank of the rule
16

hat we identified as faulty and repaired in the next iteration. Empty t
cells indicate that a previous iteration’s repair allowed the parser to
pass all tests.

While we have no guarantee that we always pick the ‘‘right’’ rule for
repair, we can observe for all but one of the grammars the number of
failed test cases decreases with each repair; the exception is grammar
#8, where the repair of the second iteration triggers more failing test
cases. This repair can be seen as the first step in a multi-step refactoring
that temporarily increases the number of failures, which then drops
significantly in the subsequent iterations. In other cases, we could
identify similar lexical errors via the rules.

In Blaise, most faults related to the structure of the formal and
actual function parameter lists. These cannot be empty, but the textual
language specification was vague about this, and many students chose
a wrong structure. The other fault classes include:

1. the interaction between the parser and lexer, which some stu-
dents did not handle well, especially in cases involving unary
and binary MINUS operators, with the latter subsumed by ADD-
OP operators;

2. token issues such as typographical errors and wrong regular
expressions (strings in most cases); and

3. a few cases of tool specific issues, e.g., wrong use of EBNF
operators in ANTLR.

RQ5: Our fault localization remains effective under multiple faults:
in all steps of an OBA approach, the repaired rule is within the top
five rules, and even was the top ranked rule in more than half of the
cases.

9. Localization for large black-box systems (RQ6)

To address questions related to scalability of our approach, we
try to identify parts of a public SQLite grammar that is known to
deviate from the language accepted by the actual SQLite system. We
retrieved the ANTLR4 SQLite grammar from https://shorturl.at/fhsBG.
The BNF version of the grammar that has been used to generate test
queries has 440 rules, 181 non-terminals and 170 terminals. This shows
that it is a fairly large grammar, at almost 5× the size of the SIMPL
rammars we used in Sections 7.2 and 7.4. The black-box system

hat we used is the sqlite3 Python module (v2.6.0) that is essentially

https://shorturl.at/fhsBG
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Fig. 8. Example model that generates tests from 𝙲𝚁𝙴𝙰𝚃𝙴 𝚃𝙰𝙱𝙻𝙴 statements, with
ard-coded allowed values for table, column and database names.

n API wrapper for a runtime SQLite library (v3.22.0) written in
he C programming language. We then wrote a simple adaptor that
reates a database connection, executes generated queries and logs each
xecution outcome.

We assume that the adaptor provides, on executing each query, the
yntactic pass/fail information. Here, we consider a test case to fail if
he system detects any syntax errors in the input and to pass if the query
xecutes successfully or if it throws exceptions that lie deeper in the
ystem, beyond the syntax analysis stage. With the above framework
stablished, it appears straight-forward to directly invoke our ‘‘flipped’’
ersion of our method that uses synthetic grammar spectra derived
irectly from test cases to identify deviations. However, it proved
mpractical to blindly generate and run queries on the system, despite
ur sole interest in exercising the parser. In particular, the system
omplains of early stage errors such as incomplete input; perhaps
ore importantly, since the runtime system implements a relaxed phase
istinction, execution can stop due to a semantically ill-formed query
efore it could complete parsing. Lack of a standalone parser also
eans that we cannot directly exercise these generated queries.

To tackle the aforementioned limitations and handle some of the
reconditions, we provide our test generator with predefined and fixed
able and column names during query generation. Fortunately, the lan-
uage accepted by the SQLite system is composed of different types of
tatements, which can be seen as sub-languages that define, query, and
anipulate tables and data in different ways. For example, the symbol
ql_stmt (which is reached directly from the start symbol program) below
s a union of entry points to these sub-languages.

program→ sql_stmt ( ; sql_stmt )∗

sql_stmt →… ∣ create_table_stmt ∣ create_trigger_stmt ∣ …

ur generator grammar defines over 20 alternatives for the sql_stmt -
ule. This allows us to model the system effectively by overriding the
tart rule and start derivations from each sub-language entry-point. We
lso fix values for rules table_name, column_name and database_name by
etting allowed names. For example, Fig. 8 shows a simplistic code
nippet written in the Prolog programming language which our test
uite generation tool uses as input that sets the start rule to 𝙲𝚁𝙴𝙰𝚃𝙴

𝙰𝙱𝙻𝙴 related statements (line #1). The values to set table, column,
nd database names are given in lines #3, #5, and #7, respectively.
his separation also allows us to handle some dependencies between
tatement types, e.g., the 𝙳𝚁𝙾𝙿 𝚃𝚁𝙸𝙶𝙶𝙴𝚁 statement requires a successful
xecution of the 𝙲𝚁𝙴𝙰𝚃𝙴 𝚃𝚁𝙸𝙶𝙶𝙴𝚁 statement.

We therefore wrote a series of models (13 in total) like the one
hown in Fig. 8. The one in the figure targets the statements related to
𝚁𝙴𝙰𝚃𝙴 𝚃𝙰𝙱𝙻𝙴 and uses the create_table_stmt and create_virtual_stmt rules
xclusively to generate tests. The other twelve models generate tests
rom the remaining statements. Unlike the model in Fig. 8, they assume
he prior successful creation of tables, and like the first model, they
re equipped with valid table and column names. Dependent statement
ypes are handled by chaining up their corresponding rules with a
emicolon separator. For example, create_trigger_stmt is always followed
y optional sequence ; drop_trigger_stmt, i.e.,

odel→ create_trigger_stmt ( ; drop_trigger_stmt )?

ote that drop_trigger_stmt can also be used independently with an
17

ptional 𝙸𝙵 𝙴𝚇𝙸𝚂𝚃𝚂 clause to avoid a corresponding dependency-related
xception to be thrown. However, this was less intuitive as it required
eddling with the grammar in order to enforce the clause to always

e present in the 𝙳𝚁𝙾𝙿 𝚃𝚁𝙸𝙶𝙶𝙴𝚁 statements and to other similar highly
ependent statements.

We are aware that this exploitation of the structure of the SQLite
rammar targets certain parts of the system and does not exercise all
rammar rules. However, we still managed to cover a large portion of
he grammar. For example, spectra from the model that tests create
able related statements are composed of 274 rules that are applied in
he generation of the deriv and bfs2 test suites. The highest number of
pplied rules in generation of the test suite by any model is 371 out of
he total of 440 rules.

We then followed a multi-stage fault localization approach where
e, in each stage, use each model to orchestrate the generation of the

est suite, which we then use to localize deviations for the language
ccepted by the SQLite system. In each stage, we then used the same
BA technique as in Section 8, where we again focus our attention on

he first discovered deviation, manually fix this deviation, and then
e-generate the tests to re-test the SQLite system. In each iteration,
e used the Tarantula metric to calculate suspiciousness scores for
ll grammar rules. This choice of ranking metric is based on the
bservation that Tarantula seemed to produce more stable rankings
nder a high number of test failures. We examined these rules in their
rder of suspiciousness, starting with the most suspicious rule, and
dentified their corresponding syntactic description as per the SQLite of-
icial specification available at https://sqlite.org/syntaxdiagrams.html.

e then manually inspected the grammar rule and its corresponding
escription to identify the cause of deviation. We finally repaired the
eviation in the grammar rule and repeated this process until no further
ests failed.

.1. Experimental results

eviation #1. The first model (see Fig. 8) gave us an initial set of 462
ailing tests out of a total of 57656 generated tests. In the first iteration,
e made the following observations. First, Tarantula ranked the rule

expr → expr (= ∣ == ∣ … ∣ 𝙸𝚂 ∣ 𝙸𝙽 ∣ …) expr

s the most suspicious rule. The rule defines the structure of binary
perators in SQLite. We consulted the official documentation and the
orresponding description for expressions, which revealed that the
eviation is in the use of 𝙸𝙽 operator. This operator has to be followed
y parenthesized expressions and not by an arbitrary expression, as is
llowed by the grammar rule. However, the grammar contains multiple
aults (or more precisely, ‘‘deviations’’). This is made evident by the fact
hat the above faulty expr -rule has not been executed in all failing tests,
ut only in 456 of those failing tests.

Since we follow the OBA principle, we first fixed the deviation in
he 𝙸𝙽 operator. We, in fact, found another expr -rule that correctly
mplemented the 𝙸𝙽 operator as follows:

expr → expr 𝙽𝙾𝚃? 𝙸𝙽 ( select_stmt ∣ expr ( , expr)? )

his means that the top-ranked rule expr → expr (… ∣ 𝙸𝙽 ∣ …)expr is an
ver-approximation fault on the correct use of the 𝙸𝙽 operator, which
e fixed by simply deleting the faulty alternative of the expr -rule that
as the 𝙸𝙽 operator.

eviation #2. After the modification, we regenerated the test suites
sing the same (first) model and repeated the process. In this iteration,
he following six tests failed:

create table STAFF as values(0) limit 0

create table STAFF

as with STAFF as (select *) values(0) order by ?

create table STAFF
as with STAFF as(select *) values(0) limit 0

https://sqlite.org/syntaxdiagrams.html
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create table STAFF as values(0) order by ? limit 0

create table STAFF as values(0) order by ?

create table STAFF

as with STAFF as(select *) values(0) order by ? limit 0

The SQLite system reports the following syntax error messages each for
each of the test cases above.

near ‘‘limit’’: syntax error

near ‘‘order’’: syntax error

near ‘‘limit’’: syntax error

near ‘‘order’’: syntax error

near ‘‘order’’: syntax error

near ‘‘order’’: syntax error

From the error messages, it is not straightforward to see where the
cause of the deviation might be; the token ) occurs on the correctly con-
umed prefix before the offending 𝚕𝚒𝚖𝚒𝚝 and 𝚘𝚛𝚍𝚎𝚛 . The select_stmt -
ule that causes the deviation is ranked sixth (out of a total 440
ules).
select_stmt → (𝚆𝙸𝚃𝙷 𝚁𝙴𝙲𝚄𝚁𝚂𝙸𝚅𝙴 common_table_expression

(, common_table_expression)∗)?
select_or_values
(compound_operator select_values)∗

(𝙾𝚁𝙳𝙴𝚁 𝙱𝚈 ordering_term (, ordering_term)∗)?
(𝙻𝙸𝙼𝙸𝚃 expr ((𝙾𝙵𝙵𝚂𝙴𝚃 ∣ ,) expr)?)?

select_or_vals→ 𝚂𝙴𝙻𝙴𝙲𝚃 … result_col …
𝙵𝚁𝙾𝙼 table_or_subquery…
(𝚆𝙷𝙴𝚁𝙴 expr)?…
∣ 𝚅𝙰𝙻𝚄𝙴𝚂 ( expr (, expr)∗ )

This deviation is confirmed by the official documentation for the VAL-
UES clause in a select statement: ‘‘There are some restrictions on the use
of a VALUES clause that are not shown on the syntax diagrams:

• A VALUES clause cannot be followed by ORDER BY.
• A VALUES clause cannot be followed by LIMIT.’’

We fixed this deviation by transforming the rules as follows:

select_stmt →… select_or_vals…
select_or_vals→ 𝚂𝙴𝙻𝙴𝙲𝚃 … result_col …

𝙵𝚁𝙾𝙼 table_or_subquery…
(𝚆𝙷𝙴𝚁𝙴 expr)?…
(𝙾𝚁𝙳𝙴𝚁 𝙱𝚈 ordering_term(, ordering_term)∗)?
(𝙻𝙸𝙼𝙸𝚃 expr ((𝙾𝙵𝙵𝚂𝙴𝚃 ∣ ,) expr)?)?
∣ 𝚅𝙰𝙻𝚄𝙴𝚂 ( expr (, expr)∗ )

he transformation pushes down the sequences that capture the
𝚁𝙳𝙴𝚁 𝙱𝚈- and 𝙻𝙸𝙼𝙸𝚃-clauses to the end of the original first alternative
f the select_or_vals-rule.

eviation #3. In this iteration, we used a model that starts derivations
rom rules that define the structure of triggers (in particular, their
reation and removal). More specifically, we have the following as the
tart production,

odel → create_trigger_stmt (; drop_trigger_stmt )?

e execute a generated test suite with 60781 test cases from which
960 fail. A tie between two top ranked rules below already give a
ood idea of the location of the deviation.

with_clause → 𝚆𝙸𝚃𝙷 𝚁𝙴𝙲𝚄𝚁𝚂𝙸𝚅𝙴? cte_table_name
𝙰𝚂 ( select_stmt ) …

cte_table_name→ table_name
(( column_name ( , column_name)∗))?

he official documentation outlines syntax restrictions on 𝙸𝙽𝚂𝙴𝚁𝚃,
𝚄𝙿𝙳𝙰𝚃𝙴, and 𝙳𝙴𝙻𝙴𝚃𝙴 statements within triggers: ‘‘Common table ex-
pression are not supported for statements inside of triggers.’’ The trigger-
related rules in the grammar completely ignore this restriction and
18
allow generic 𝙸𝙽𝚂𝙴𝚁𝚃, 𝚄𝙿𝙳𝙰𝚃𝙴, and 𝙳𝙴𝙻𝙴𝚃𝙴 statements inside trig-
ers. The faulty rules with_clause and cte_table_name are directly deriv-
ble from these statements; the latter only ever occurs in the former
i.e., with_clause-rule).

In the fix for this deviation, we simply duplicate rules from the three
tatements and remove the call to with_clause.

eviation #4. The above fix did not cater for all failures as we are left
ith another 1152 failing tests after the modification. Here, all the test

ailures have the same structure and the system throws similar syntax
rror messages. Below, we show one of the failing tests

create trigger tr1

delete on STAFF begin select 0 between 0 or 0 and 0; end

nd its corresponding error message:

near ‘‘;’’: syntax error

rom these failures we can, to some extent, conclude that the in-
eraction among operators 𝙱𝙴𝚃𝚆𝙴𝙴𝙽, 𝙾𝚁, and 𝙰𝙽𝙳 (in that order) is
roblematic. Fault localization also confirms this with the two expr -
ules (as shown below) are flagged as the most suspicious and both
ules are applied in the derivation of all failing tests (i.e., both have
f(𝑒) and nf(𝑒) counts of 1152 and 0, respectively).

expr →…
∣ expr 𝙾𝚁 expr
∣ expr 𝙽𝙾𝚃? 𝙱𝙴𝚃𝚆𝙴𝙴𝙽 expr 𝙰𝙽𝙳 expr
∣ …

aking a closer look, it seems the parser detects precedence issues
etween the operators 𝙾𝚁 and 𝙰𝙽𝙳 which has a higher precedence than
𝚁, due to a parsing conflict between

xpr → expr 𝙰𝙽𝙳 expr

nd

xpr → expr 𝙽𝙾𝚃? 𝙱𝙴𝚃𝚆𝙴𝙴𝙽 expr 𝙰𝙽𝙳 expr

o circumvent this behavior, wrapping parentheses around the expr -
ymbol before the 𝙰𝙽𝙳 token in the second expr rule seemed to be the
ost plausible fix. The modified rule is as follows:

xpr → expr 𝙽𝙾𝚃? 𝙱𝙴𝚃𝚆𝙴𝙴𝙽 ( expr ) 𝙰𝙽𝙳 expr

ote that this is not a ‘‘proper’’ fix, but rather a ‘‘grammar hack’’ that
oes not modify the language, but it resolves all remaining test failures
nd so demonstrates that there are no further deviations

In this experiment, we see that our approach enables us to identify
our deviations in the larger SQLite grammar. The OBA technique also
llows us to find the first deviation in each stage with low wasted efforts
s we only needed to inspect one rule to find the first deviation, five
ules to find the second deviation, two rules to find the third deviation;
inally, the cause of the fourth deviation was the top-ranked rule. The
ther models did not result in any test failures.

In summary, we can therefore answer RQ6 positively:

RQ6: The rule-level localization remains effective and scales to large
production-quality grammars.

10. Threats to validity

Our experimental evaluation is subject the typical concerns re-
garding construct validity, in particular possible implementation and
data collection errors, as well as statistical conclusion validity. How-
ever, there are additional challenges in validating the extension of
our findings beyond the specific experimental set-up that we used,
such as applying them to alternative ranking metrics, parsing methods,
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grammars, or test suites. Our fault seeding experiments are based on
a single grammar, meaning that variations in grammar structure may
yield different outcomes due to dependencies on test suite construction,
mutant creation, and spectrum collection. For example, we originally
used a grammar version that was not left-factorized, which resulted
in the ANTLR rule tracking issues outlined in Section 5.1 and yielded
incomplete spectra, which distorted the results. Additionally, our fault
seeding incorporates mutations at the initial symbol of a rule, poten-
tially generating non-LL(1) mutants that also trigger the rule tracking
issues. A preliminary analysis indicated that localization performance
can differ significantly, by approximately 15 rules (i.e., nearly 20
percentage points), between mutations at the first symbol versus others.
However, we used a variety of other grammars on other (non-seeded
faults) experiments, without any substantially different results, which
partially mitigates against this threat.

Gopinath et al. (2014) have demonstrated that mutants are not
syntactically close to actual faults, but they remain valid substitutes
in numerous software engineering applications, including fault local-
ization (Just et al., 2014). However, with the exception of the work
by Bendrissou et al. (2023), grammar mutations have not been investi-
gated systematically and other mutation operations may yield different
results. Hence, even though our localization experiments with student
grammars (see Section 8) show similar results, care should be taken in
generalizing the results above.

The experiments have shown that the localization performance is
influenced by the composition of the test suites and may thus not
generalize, despite the differences in the test suites we have used. The
large test suite contains tests that are constructed based on the same
principle as the mutants (i.e., rule mutation) and may thus overestimate
performance.

In the item-level localization experiments, we introduce more heuris-
tic elements, especially in our handling of ties. The 𝑘-max tie breaking
strategy is modeled on parse behavior over positive tests and while
we also got better results for the larger mixed test suite which contain
negative tests, 𝑘-max may not generalize to other grammars, parsing
technologies, or other ranking metrics.

Since our evaluation in Sections 8 and 9 relies on subjective assess-
ments by the authors, the results are also subject to possible experi-
menter bias, human error, and human performance variation. We tried
to mitigate against this threat by following an experimental protocol
over unseen grammars, but certain aspects such as rule selection and
cut-off point determination were not fully specified.

11. Related work

We do not know any other work that directly shares our goal of
identifying faulty rules in a grammar but there is a wide range of
related work from different areas.

Error recovery in parsers. Traditional error recovery methods for parsers
(Diekmann and Tratt, 2020) assume that the grammar is correct and
the input incorrect, and modify the input or the parser state, not the
grammar. Both their aims and techniques are therefore different from
our work, and we do not consider such methods here.

Spectrum-based fault localization. Many different methods (e.g., static
analysis, model-based reasoning, or deep learning) have been used in
software fault localization; Wong et al. (2016) give a good survey of
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the entire field. We focus on spectrum-based methods only (de Souza
et al., 2016; Wong et al., 2016).

More than 30 different metrics have been proposed in the literature
(Naish et al., 2011; de Souza et al., 2016; Wong et al., 2016), with
some originally developed for problems in other domains such as
botany (Ochiai, 1957) or information retrieval. Many metrics produce
identical rankings (Naish et al., 2011; Debroy and Wong, 2011). Theo-
retical studies (Xie et al., 2013) trying to identify optimal metrics have
not been been successful in practice (Le et al., 2013). We use four of
the most widely used metrics that have also performed well in other
experimental evaluations (Abreu et al., 2006; Le et al., 2013): Taran-
tula (Jones and Harrold, 2005), Ochiai (1957), Jaccard (Chen et al.,
2002), and DStar (Wong et al., 2014). Tarantula is the only of these
metrics that takes program entities into account that are not executed
n passing test cases (see Table 1); however, experiments (Abreu et al.,
006; Wong et al., 2014) have shown that Ochiai, Jaccard, and DStar
re more effective for software fault localization. In an experimental
omparison of different metrics over seven small or medium-sized
rograms (with a size of 20-124 basic blocks) from the widely used
iemens benchmark suite, (Abreu et al., 2006) report average ranks of
he faulty statements between 1% and 50% of the respective program
izes, with overall averages of 23% for Tarantula, 22% for Jaccard, and
% for Ochiai.

Our experiments in Sections 7.2 and 7.4 evaluate the efficacy of
ur SFL approach using grammars with seeded faults. Fault seeding
as been used extensively in the literature (Naish et al., 2011; Wen
t al., 2011; Abreu, 2009) although we use different, domain-specific
utation operators. We further successfully evaluate our solution over

rammars with multiple faults in Sections 8 and 9 even though it is
ell known that SFL techniques are based on a single-fault assumption
nd that their accuracy deteriorates for programs with multiple faults
Abreu et al., 2009; Xue and Namin, 2013).

One of the open questions in SFL is tie resolution. Xu et al. (2011)
resent an evaluation of three heuristics for breaking ties viz., state-
ent order-, confidence- and data dependency-based strategies. Our

tem-level fault localization uses a simple strategy that prefers the right-
ost item of a rule which can be seen as a domain-specific version of
statement-order based tie breaking strategy. Our attempts to resolve

ies by further exploiting the hierarchical structure of the grammar did
ot produce favorable results. Finally, Steimann et al. (2013) study the
hreats of validity for SFL. Our work inherits most of the threats of
alidity outlined in their study.

rammar smells and ambiguities. A system smell is a specific system
structure that indicates a violation of some fundamental design prin-
ciples; it does not necessarily indicate a fault, but it can negatively
impact the design quality and system’s evolution. Stijlaart and Za-
ytsev (2017) have identified a number of grammar smells that are
easily checkable, such as different cloning variants or unexpectedly
nullable non-terminal symbols. One specific smell is ambiguity, which
is undecidable in general (Cantor, 1962), although practical algorithms
have been developed for several specific cases (Schröer, 2001; Schmitz,
2007, 2008; Brabrand et al., 2010; Basten, 2010). In particular, Basten
(2010) describes an algorithm that identifies rules that are provably not
involved in an ambiguity and so helps with localization. LR parser gen-
erators typically report any shift/reduce and reduce/reduce conflicts
that they encounter; Isradisaikul and Myers (2015) produce ‘‘unifying
counterexamples’’ for such situations that can help users to debug their
grammars.

However, none of these approaches can really be seen as fault
localization, because smells are not necessarily faults. Consider for
example the traditional ‘‘dangling else’’ problem (Aho et al., 2006).
Most LR parsers resolve the ambiguity indicated through shift/reduce

conflict by shifting, and so accept the intended language.
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Grammar-based test case generation. (Purdom, 1972) described the first
algorithm to systematically generate test suites from grammars; specif-
ically, the algorithm generates the minimal number of sentences that is
necessary to exercise all grammar rules. Malloy and Power (2001) give
a more declarative formulation of the algorithm and Celentano et al.
(1980) extend it with a minimal and a maximal sentence generation
strategy. However, the test suites generated by these algorithms are too
small and the individual test cases are too complex and cover too many
rules, and are thus not well-suited for use in fault localization.

In contrast, context-dependent rule coverage (Lämmel, 2001) or
cdrc yields more detailed test suites because it requires each rule to be
applied to each non-terminal occurrence in any rule of the grammar.
We also use several additional coverage criteria that we recently devel-
oped (van Heerden et al., 2020) to produce diverse positive test suites:
bfs2, a variant of cdrc that induces longer phrases; step𝑘, another variant
of cdrc that induces deeper derivations; derivable pair coverage (deriv), a
variation of Zelenov and Zelenova’s pll criterion (Zelenov and Zelenova,
2005) that also induces deeper derivations; and adjacent pair coverage,
a criterion that ensures that all possible pairs in the follow-relation are
covered.

The focus of grammar-based test case generation has mostly been
on generating syntactically correct programs (i.e., positive tests) and
only little attention has been devoted to the generation of programs
with well-defined syntactic errors (i.e., negative tests). We have also
developed two algorithms that construct negative test suites using word
and rule mutation (Raselimo et al., 2019).

In random sentence generation, introduced by Hanford (1970), rules
are randomly selected and applied until a complete sentence is derived.
Such approaches often have a large number of control parameters
(e.g., rule probabilities, symbol and rule counts, length, depth, and
balance restrictions, and many others) that ensure that the derivation
process terminates, and that the generated test suites have certain char-
acteristics (Payne, 1978; Bird and Munoz, 1983; Homer and Schooler,
1989; Maurer, 1990, 1992; Lämmel and Schulte, 2006; Hoffman et al.,
2011). Such methods have been used to test SQL (Slutz, 1998), C (Yang
et al., 2011), and Java (Yoshikawa et al., 2003) processors, and are
also applied in some fuzzing tools such as jsfunfuzz (Ruderman, 2007),
the CSS grammar fuzzer (Ruderman, 2009), or langfuzz (Holler et al.,
2012).

12. Conclusions and future work

Grammars can contain bugs like any other software. Testing can
demonstrate the presence of bugs in grammars, but does not directly
give any further information about their location. In this paper, we
described and evaluated a spectrum-based approach to localize faults
in a context-free grammar where we replaced the concept of ‘‘executed
statements’’ by that of ‘‘applied grammar elements’’, but kept the
remaining established framework in place.

Our evaluation showed that our approach can localize faults in
grammars with a high precision. In a large fault seeding experiment,
the rule-level localization ranked the seeded faults within the top five
most suspicious rule in more than half of the cases and pinpointed
them (i.e., uniquely ranked them as the most suspicious) in 10%–30%
of the cases, with significantly better results for our fault localization
method based on synthetic rule spectra. Using the same experimental
setup, the item-level localization method, coupled with a specialized
tie breaking mechanism, ranked the seeded faults within the top five
most suspicious positions in about 30%–60% of the cases; on average,
it ranked them in about 10%–20% of all positions. It also significantly
outperforms a simplistic extension of the rule-level localization, where
all positions within a suspicious rule are given the same score. Gener-
ally, item-level localization is therefore preferable; the only exception is
when the SUT is a black-box system and we need to resort to synthetic
spectra.
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We were also able to use our fault localization method to identify
faults in student submissions that contain real and multiple faults.
Finally, the fault localization method based on synthetic rule spectra
identified four locations where a large SQLite grammar deviates from
a language accepted by a production SQLite system.

Future work. We plan to extend our experimental evaluation to include
further parsers and languages, but we also see several other interesting
areas of future work. First, we can analyze ANTLR’s adaptive LL(*) pars-
ing mechanism in detail to see whether we can extract better spectra for
non-LL(𝑘) grammars. Second, the mutation results in Section 7 suggest
that our handling of negative test cases may be overly simplistic;
we thus plan to use test suites where the expected outcome includes
the error location. Third, we will use specialized spectrum-based fault
localization algorithms such as FLITSR (Callaghan and Fischer, 2023)
to improve the localization performance in the multi-fault case. Finally,
we plan to refine the construction of synthetic spectra. Specifically, we
can limit their amount of over-approximation by keeping tack of the
positions in the test cases of the yield of each non-terminal, and thus
only include rules whose yield starts before the error position. In a
similar way, we can also construct synthetic item spectra.
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