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ABSTRACT

Identifying and fixing bugs in programs remains a challenge and
is one of the most time-consuming tasks in software development.
But even after a bug is identified, and a fix has been proposed by
a developer or tool, it is not uncommon that the fix is incomplete
and does not cover all possible inputs that trigger the bug. This can
happen quite often and leads to re-opened issues and inefficiencies.
In this paper, we introduce P3, a curated dataset composed of in-
complete fixes. Each entry in the set contains a series of commits
fixing the same underlying issue, where multiple of the intermediate
commits are incomplete fixes. These are sourced from real-world
open-source C projects. The selection process involves both auto-
mated and manual stages. Initially, we employ heuristics to identify
potential partial fixes from repositories, subsequently we validate
them through meticulous manual inspection. This process ensures
the accuracy and reliability of our curated dataset. We envision
that the dataset will support researchers while investigating par-
tial fixes in more detail, allowing them to develop new techniques
to detect and fix them. We make our dataset publicly available at
https://gitlab.com/sosy-lab/research/data/partial-fix-dataset.
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1 INTRODUCTION

Debugging, which comprises fault localization, fault understanding,
and fault repair, takes up a large part of resources of the software
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development process. It has been shown that fixes proposed by
developers or automatically by a tool have a high likelihood of
being incorrect [15, 24, 25]. Incorrect patches are prevalent, and
typically manifest themselves as re-opened issues because an earlier
attempt at the fix introduces another bug or misses some edge cases.
Existing research has documented the extent to which these bad
fixes exist: reports in these studies [2, 10, 18, 24] show that about
10 % - 33 % of bugs in several large-scale software projects required
multiple fix attempts due to an initial incorrect patch.

We concentrate on the bad-fix problem [10]. Bad fixes fall into two
categories: (i) bug fixes that introduce regressions and (ii) bug fixes
that partially fix a bug and therefore only cover a fraction of bug
inducing inputs. We focus on the second category of bad fixes here,
and we call these partial or incomplete patches. Unlike in regression
testing (first category), where many techniques, tools, and well-
defined benchmarks to evaluate the bad fixes exist [13, 16], little
attention has been paid to finding and fixing incomplete patches
directly. While the existence of partial fixes has been studied before
[2, 10, 12, 18, 24], insights from these studies are drawn from only a
handful of programs and therefore do not readily lend themselves to
evaluating new automated approaches to repair incomplete patches.

In this paper, we take a step forward in exploring the prevalence
of partial patches on a large number of code repositories. More
specifically, we present a dataset based on real-world C programs
with real bugs that required multiple attempts to correctly (and
completely) fix the bug. To assemble this dataset, we crawled 3717
Crepositories on GitHub and also added cases of incomplete patches
from the Linux kernel. Identifying incomplete patches involves two
steps: (a) candidate selection: we use heuristics based on events in
each issue for crawled repositories and information in the commit
messages of the Linux kernel; (b) validation: for each issue i, with
related commits X7, ..., X, ordered chronologically, we analyze if
commits Xy, ..., X,_1 are partial fixes of the problem occurring
at X; with an expected fix X,,. Note that we ignore merge and
intermediate commits, if they do not have any impact on the issue.

This paper builds on top of the ideas in our technical report [5].
The main extension to that paper is the validation and classification
of ‘true’ partial fixes. We therefore introduce and release P3', a
dataset comprising 187 programs with partial fixes. Most of them
belong to control-flow bugs caused by missing or incorrect con-
ditions in if-statements or loops. Other classes of partial fixes are
memory-related, hardware-specific, or concurrency-related.

!P3 stands for Partial Program Patches
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@ee-391,6 +391,8 @@int main(int argc, char *xargv)
/* goto the last line that had a character on it =*/
for (; 1->1_next; 1 = 1->1_next)

this_line++;

+ if (max_line == @)

+ return EXIT_SUCCESS; /* no lines, so just exit x/
Figure 1: First, partial fix to issue 422 with col

@@-396,7 +396,7 @int main(int argc, char *xargv)

/* goto the last line that had a character on it =*/
for (; 1->1_next; 1 = 1->1_next)
this_line++;
- if (max_line == @)
+ if (max_line == @ && cur_col == 0)
return EXIT_SUCCESS; /* no lines, so just exit =%/

Figure 2: Second, successful fix to issue 422 with col

Potential Applications. First of all, having a well-curated dataset
enables a fair, accurate, and precise evaluation of tools for automatic
program repair. Also, it supports proposals of new measures for the
quality of patches. Second, the partial fixes in our dataset contain
valuable information (e.g., bug location and program semantics) that
can be exploited by specialized program-repair techniques, thereby
making subsequent repair tasks easier. Since the location oracle is
available by construction, these repair tools do not need any output
from expensive and imprecise fault-localization methods and can
instead solely focus on patch synthesis. Machine-learning-based
program-analysis and repair techniques can also benefit from this
dataset. New techniques in these areas can incorporate this set
in their training pipelines, so they can better detect and predict
incomplete patches and suggest ways on how to repair.

Example. We showcase a partial fix with the help of issue 4222
of the repository util-1inux3. We derive our example from one
of the utilities in the repository called col?, which filters out the
Unicode characters ‘reverse line feed’ (go up one line) and ‘half-
reverse line feed’ (go up half a line) from a given input. In revision
c6b0cb, col falsely printed a newline character for empty inputs.
The changes in Fig. 1, trying to solve the problem by exiting without
printing a newline if there are no line breaks in the input. However,
it would still wrongly print a newline for input sequences with at
least one character without line breaks. Therefore, an additional
check was later added to the if-condition to fix the bug (cf. Fig. 2).

2 METHODOLOGY

Figure 3 summarizes the selection process. First, we automatically
generate candidates from code repositories (¥¥). Afterwards, we use
heuristics to filter () the most promising candidates for manual
inspection. The manual inspection is done by three authors (&) in
two phases. First, every author inspects a third of the candidates and
passes 100 % of their candidates labeled ‘partial fixes’ (green arrow)

Zhttps://github.com/util-linux/util-linux/issues/422
3https://github.com/util-linux/util-linux
4https://man7.org/linux/man-pages/man1/col.1.html
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Figure 3: Selection process for the benchmark set

and 5 % of the candidates labeled ‘no partial fix’ (dotted red arrow)
to the other authors. Second, the other authors cross-validate the
candidates. We label a candidate as a ‘partial fix’ or ‘no partial fix’
if all authors agree on the classification. We label a candidate as
‘unknown’ (?) if it has not yet been inspected by all authors or if
the authors do not agree on the classification. In the dataset, we
keep all candidates, but add the above labels to the task-definition
file (cf. Fig. 5).

2.1 Candidate Generation and Selection

In this section, we describe the heuristics employed to automati-
cally obtain the most promising candidates for our dataset. Each
candidate is a sequence of commits with some metadata related to
them.

GitHub Issues. We query all C repositories on GitHub and sort
them descending by the number of received stars. The number of
stars is a good indicator for well-maintained and popular projects.
We then go through all repositories and collect all closed issues.
The issue together with a list of issue events are processed in two
stages during the automatic candidate selection. First, we examine
the issue events and check if the following criteria hold:

Creopen The issue was reopened after it was closed and has at least
one commit after reopening.

Cstatus The issue has multiple commits and the CI pipeline failed
for at least one commit but not the last one.

Second, if at least one of these criteria holds, we consider the is-
sue as a candidate for a partial fix. For each candidate, we store
all available metadata from the issue’s events. Issue events track
discussions, comments, labels, actions, and commits. We track quan-
titative information such as the number of commits, the number of
touched files, and changed lines. Additionally, we also track quali-
tative information such as the discussion on GitHub, the commit
messages, helpful labels, and keywords. The metadata are later used
to ease the manual validation.

Linux Kernel. The developers of the Linux kernel have the con-
vention to tag the bug-inducing commit being fixed®. The reference
between commits is done by adding “Fixes:” to the commit mes-
sage’®. We use this information to build sequences of commits by
following the “Fixes:” references. If a sequence has at least three
commits, then it is likely to contain a commit which introduced the
bug, a partial fix, and a final solution. Therefore, we only consider
sequences with more than three commits for the manual validation.
All other sequences are discarded.

Shttps://lwn.net/Articles/914632/
Chttps://git kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
¢511851de162
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Repository 1

a-base.zip ] [ b-partial-1.diff ] [ b-partial-m.diff ]

task.yml c-expected-fix.diff

Figure 4: Directory and file structure of the created partial-fix
dataset, taken from [5]

The sequences of commits can only be accepted as candidates,
since the developers only indicate the bug-inducing commit. This
may generate a sequence where there are multiple unrelated bugs

being fixed.

2.2 Manual Candidate Validation

The candidate selection yields 2 362 candidates from GitHub issues
and 5999 candidates from the Linux kernel. We equally distribute
all candidates from GitHub issues, of which we managed to look
at 1605, and 100 randomly selected issues from the Linux kernel
to three authors for manual validation. All other candidates are
discarded. Every author confirms or rejects a candidate as ‘partial
fix’. To increase the confidence in the classification, and to keep the
workload manageable, 100 % of the confirmed but only 5 % of the
rejected candidates of an author go to the other two authors for an
additional inspection. A candidate is only labeled as ‘partial fix” in
the task-definition file (see Fig. 5) described in Sect. 2.3, if all authors
agree on it being a ‘partial fix’. If all authors reject a candidate,
we label it as ‘no partial fix’ in the dataset. Candidates with less
than three or mixed classifications are labeled as ‘unknown’. The
standard procedure for every candidate is as follows: (i) we first
read the issue description and commit messages to get an idea of
the issue, (ii) we then check all patches related to the issue and
perform a qualitative analysis of the changes, and finally, (iii) we
confirm or reject a candidate with a short explanation.

2.3 Organization of the Dataset

Format. Figure 4 depicts the directory and file structure of the
dataset. The root directory contains a directory for each repository
where at least one candidate has been labeled. We place a directory
named ‘Partial n’ for every candidate in the directory of the re-
spective repository. Initially, these only contain the task-definition
file (cf. Fig. 5). However, it is possible to restore the base version
before the first commit of the repository (a-base.zip), the diffs of
all fix attempts (b-partial-n.diff), and the diff of the expected fix
(c-expected-fix.diff) with the help of a provided script.

Task Definition. The task definition as seen in Fig. 5 lists all
relevant information about a candidate in a machine- and human-
readable format. After the format version, we give the URL of the
repository followed by a sequence of commits, namely the base
version, fix attempts, and the expected fix. Each commit consists of
its commit hash and the input file. The base version points to a ZIP
archive relative to the task definition containing the project at the
given revision. The fix attempts and the expected fix point to a diff
files. The diffs need to be applied sequentially to the base version to
obtain the ‘fixed’ project. The classification has one of three values:
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# Version of this task-definition format
format_version: '1.0'

1
2
3
4 # URL of the base repository with the bug

5 repository_url: github.com/util-linux/util-linux
6

7

8

# Information supposed to be given to the tool

sequence:
9 # Buggy base version of the program
10 base_version:

11 # Archive of program

12 input_file: 'c6b@cbhdd.zip"

13 # Commit hash of the base version
14 commit-shal: c6b@chdd. ..

15

16 # Fix attempts

17 fix_attempt:

18 - input_file: 'b6b5272b.diff'

19 commit-shal: b6b5272b. ..

20

21 # Expected fix

22 expected_fix:

23 input_file: 'd8bfcb4c.diff'

24 commit-shal: d8bfcb4c...

26 # Does this task contain a partial fix?
27 classification: partial fix

28 # If yes, what kind of partial fix is it?
29 category: ["arithmetic_and_control-flow"]

31 # Metadata about the task
32 metadata:

33 # Language of the project

34 language: C

35 # Which heuristic generated the candidate?

36 strategy: reopen

37 # Is there a build system available?

38 build_system: ['make']

39 # URL to the issue that describes the related bug
40 related_issue: ..util-linux/util-linux/issues/422

Figure 5: The task-definition of our example in Sect. 1;
slightly modified for brevity

partial fix, no partial fix, or unknown depending on the candidate
being classified as a partial fix or not. If the authors disagree or did
not yet inspect the candidate, we label it as unknown. Partial fixes
also come with categories (cf. Table 1) and metadata, such as the
programming language, the heuristic that generated the candidate,
the build system, and optionally, the related issue.

3 THE P3 DATASET

Crawling GitHub issues for over 3 months, we collected 2 362 can-
didates in 3 717 crawled repositories, where 498 repositories con-
tained at least one candidate. Figure 6 shows some statistics about
the repositories containing at least one candidate. This demon-
strates that the candidates come from a wide variety of projects
in terms of stars, issues, and size. In total, we manually inspected
21489 commits with over four million changes. We found 258 par-
tial fixes in 2 362 issues of which we inspected 1 605. Our two criteria
Creopen and Cstatus matched 2 141 and 233 issues, respectively. In
the Linux kernel we found 5 999 candidates of which we manually
inspected 100 candidates and confirmed 40 partial fixes. When we
tried to archive the repositories, git could not find some revisions
of our candidates anymore. We excluded these candidates from the
final dataset.
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Statistics of analyzed repositories
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Figure 6: Distribution of received stars, number of issues, and
size of considered repositories

Table 1: Classification of partial fixes

Keyword

Arithmetic and Control-Flow 62 branching conditions, iteration
amounts, off-by-one errors, . ..

14 problems with specific
hardware or OS

# Description

Hardware and OS

Null Pointers 11 dereference, null check, ...

Performance 10 time and memory
consumption

Memory 8 memory leaks, segmentation
faults, . ..

Multi-processing 5 race conditions, deadlocks, ...

Wrong Data Type 5 overflow, can hold too few
elements, ...

Same Fix, Different Location 5 porting fix, copied code, ...

Code Quality 5 refactoring, . ..

Preprocessing Directives 4 conditional compilation,
declarations, . ..

In total, out of the original 1705 candidates, we are left with 187
true ‘partial fixes’, 15 definite ‘no partial fixes’, and 1 116 unclassified
or unknown candidates. The remaining 387 candidates were no
longer available to download three months after crawling GitHub.

Partial-Fix Categories. To understand partial fixes better, we
categorize them manually, assigning each a possibly empty set of
descriptive labels from Table 1. Most of the partial fixes are re-
lated to arithmetic and control-flow operations. These are usually
caused by missing or wrong conditions in if-statements or loops
or off-by-one errors. The second most common category is related
to hardware or operating-system-specific code. This includes code
that is only executed on a specific operating system or hardware,
and therefore cannot be tested on other systems. Other common cat-
egories are related to null pointers, performance, memory problems,
multi-processing issues, and wrong data types. One particularly in-
teresting category consists of partial fixes where the same fix needs
to be applied in multiple locations, for example when back-porting
code or when code was copied originally from another place.
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Limitations. The dataset consists of patches in considerably large
software projects. This may be challenging for some applications.
The used projects are usually under active development. Therefore,
between every commit in a task-definition file, unrelated parts of
the code may have changed. Moreover, forcefully pushed commits
or large merge commits from forks may introduce additional noise.

Future Work. We plan to continuously extend and refine the
dataset by including projects in other programming languages,
adding more partial fixes, and improving the automated selection
process with a preliminary automated classification. Moreover, we
want to isolate partial fixes by exposing the partial fix in a sequence
of single files rather than a sequence of patches in a project.

4 THREATS TO VALIDITY

Internal validity. Since the crawler is based on heuristics, we miss
some true partial fixes for certain projects. However, the quality of
the benchmark set is not affected by this, since we manually inspect
every candidate for partial fixes. Our manual cross-validation safe-
guards against the usual threats such as human error, bias, and
performance. Therefore, we are confident of the correctness of this
collection of partial fixes.

External validity. While our aim is to provide a diverse and rep-
resentative set of partial fixes for the benchmark set, there is no
guarantee that all possible classes of partial fixes have been covered.
This is mitigated by crawling a wide variety of projects.

5 RELATED DATASETS

For bug finding, there are a many tools available and also sev-
eral benchmark datasets [8, 14]. Further benchmarks have been
proposed and used to evaluate automated fault-localization and
program-repair techniques [6, 7, 9, 17, 19, 20, 23]. DBGBench [6] is
a dataset with 27 real bugs aimed at evaluating new debugging
approaches. The datasets ManyBugs and IntroClass [9] collec-
tively contain 1183 defects from 15 C programs. More widely used
datasets include Defects4J [11], BugsInPy [22], Space [21], and
the Siemens suite of small C programs. While some subject pro-
grams in these sets may contain partial fixes, their original intent
does not readily lend themselves to addressing the incomplete-
patch problem. Perhaps more related to ours is the recent dataset
ReCover [1] of 28 Java programs designed to complement older
datasets used for evaluating regression testing approaches. How-
ever, regression testing is concerned with a different category of
bad fixes, while our focus here is exclusively on partial fixes.

6 CONCLUSION

This paper introduces and describes the dataset P3 for partial or
incomplete patches. We collected partial-fix candidates from GitHub
using heuristics and from the Linux-kernel repository. These candi-
dates were then manually validated to ensure that they are indeed
partial fixes. The raw data contain 258 labeled partial fixes and 32
false positives from which we derived 187 definitive partial fixes
and 15 cases that are no partial fixes, in the final dataset.
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Data-Availability Statement. The dataset is publicly available at
https://gitlab.com/sosy-lab/research/data/partial-fix-dataset. The
current snapshot is archived [3]. Additionally, a reproduction pack-
age including all scripts and our raw data is archived [4].
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