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Abstract

We describe the first approach to automatically repair faults in context-free grammars: given a grammar that fails some tests in a
test suite, we iteratively and gradually transform the grammar until it passes all tests. Our core idea is to use spectrum-based fault
localization to identify promising repair sites (i.e., specific positions in rules), and to apply grammar patches at these sites whenever
they satisfy explicitly formulated pre-conditions necessary to potentially improve the grammar.

We implement and evaluate a passive and an active variant of our repair approach. In passive repair, we repair against the fixed
input test suite as specification. The key extension of the active repair is to exploit an oracle in the form of a black-box parser for the
target language to incorporate a test suite enrichment into the repair. This generates additional tests from each repair candidate and
issues membership queries to the oracle to confirm the outcome of each of these tests.

We demonstrate the effectiveness of both repair variants using thirty-three student grammars that contain multiple real faults.
We show that both variants are effective in fixing real faults in these grammars but that active repair produces repairs with higher

precision than passive repair.
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1. Introduction

Grammars are software, and can contain bugs like any other
software. This is true even for well-curated grammars. [Limmel
and Verhoef] (2001) found “more errors than one would expect
from a language reference manual” when analyzing COBOL,
and|Zaytsev| (2010) shows errors and inconsistencies in the lan-
guage specifications of both Java and C#. Grammar testing
(Lammel, 2001b) can demonstrate the presence of such bugs
in grammars and grammar fault localization (Raselimo and Fist
cher, [2019) can identify rules that are likely to contain bugs, but
neither of the two techniques can automatically repair bugs and
Jfix grammars.

In this paper, we introduce and formalize the grammar repair
problem, and present the first approach to automatically repair
bugs in context-free grammars: given a grammar that fails some
tests in a given test suite, we iteratively and gradually transform
the grammar until it passes all tests.

Motivating example. Our approach is based on the “find-and-fix”
cycle typically used in manual repair. As an example, consider
a situation where we are trying to develop a CUP (Kaplan and
Shoupl 2000) grammar specification against a small test suite
TS5, with positive tests to complement an informal description
of the target language 70y. Assume that our grammar G/ is
similar to the correct version Gm shown in Figure|l} with the
exception of the last two rules that have the following form:
name  — id|id [ simple 1 | id ( name namelist )
namelist — namelist , name | €
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Assume further that we are faced with the following three failing
tests in T'Sg5,:

program a begin a(0) end
program a begin a(06, 0) end
program a begin a(0, 0, 0) end

In all three cases, CUP’s syntax error messages are indeed not
useful — in particular, they only confirm the error location and
token, but give no further information:

Error in line 1, column 19: Syntax error.
Found NUM(@), expected token classes are [].

We therefore need to trace the failing tests back to our grammar,
to identify the faulty rules and then the precise fault positions
within these; in this case, this is relatively straightforward be-
cause all three tests fail right after the token sequence id (, and
there is only one rule in G/, where this sequence occurs, i.e.,

name — id | id [ simple 1 | id ( e name namelist )

Here, we use the o-symbol to indicate the suspected error posi-
tion, i.e., the error is at name on the right-hand side of the third
rule for name.

Based on this (manual) fault localization, we can now try to
repair the fault and fix the grammar. We first try to patch the
faulty rule, by applying a small, localized transformation, rather
than to refactor the entire grammar. Common patches include
deleting, inserting, or substituting symbols, and we decide to
substitute name by num, to ensure that the bad token num is
accepted. Note that there are other patches that also ensure this
(e.g., inserting num or substituting name by expr) but this is the
least intrusive patch.

March 9, 2023



— program id body
| program id fdecllist body
fdecllist — fdecl | fdecl fdecllist
fdecl — define id ( paramlist ) body
| define id ( paramlist) -> type id body
paramlist — param | param , paramlist
param  — type id | type array id

prog

type — boolean | int
body — begin stmts end
| begin vdecllist stmts end
vdecllist — vdecl | vdecl vdecllist
vdecl — type idlist ; | type array idlist ;
idlist — id|id, idlist
stmts — relax | stmtlist
stmtlist — stmt | stmt ; stmtlist
stmt — assign | cond | input | Leave | output | loop
assign ~ — name | name : :=expr | name : := array simple
cond — if expr then stmts end
| if expr then stmts elsiflist end
| if expr then stmts else stmts end
| 1f expr then stmts elsiflist else stmts end
elsiflist — elsif expr then stmts
| elsif exprthen stmts elsiflist
input — read name
output  — write elemlist
elemlist — elem | elem . elemlist
elem — string | expr
loop — whileexprdo stmts end
expr — simple | simple relop simple
relop S =|>=|>|<=]|<]| /=
simple  — - termlist | termlist
termlist — term | term addop termlist
addop — -|or |+
term — factorlist
factorlist — factor | factor mulop factorlist
mulop — and | /| * | rem
factor  — name | num | (expr) | not factor
| true | false
name — id | id [ simple ] | id ( arglist)
arglist  — expr | expr , arglist

suitable for CUP.

Figure 1: BNF baseline grammar G,

We then validate this patch, i.e., generate a CUP parser from
the patched grammar and run it over the test suite. Here, the
patch turns out to be a partial repair only: it does not introduce
any new test failures but does not resolve all previous failures,
and we are left with two failing test cases:

program a begin a(0, 0) end

program a begin a(0, 0, 0) end
In both cases, we get the same syntax error messages as before,
with the new error locations showing that we indeed made some
progress on these two test as well:

Error in line 1, column 22: Syntax error.
Found NUM(0), expected token classes are [].

This indicates that the patched grammar still contains another
occurrence of name that needs to substituted, i.e.,

namelist — namelist , ® name | &

Patching the first namelist-rule accordingly resolves the two test
failures. Both patches together thus constitute a full repair that
fixes the grammar.

Approach. Manual grammar repair is tedious because devel-
opers need to track information about syntax errors back to
the grammar, without much feedback from the parser: since
the parser assumes that the grammar is correct and the input
wrong, its error messages are not necessarily useful for the re-
pair process. We propose a generate-and-validate grammar
repair approach that automates the find-and-fix loop illustrated
in the example above. This approach constructs a repaired gram-
mar G’ from an initial user-provided test suite (used as a repair
specification) and a faulty grammar G. At its core, our method
involves the following steps:

1. Localization: we use spectrum-based fault localization
for CFGs (Raselimo and Fischer] [2019,|2023) to identify
promising repair sites (i.e., specific positions in rules).

2. Transformation: we apply small-scale grammar transfor-
mations or patches at these sites whenever they satisfy
explicitly formulated pre-conditions (see Section[d]to Sec-
tion[6] for details) that are necessary to potentially improve
the grammar.

3. Validation: in addition to the static patch validation, each
generated candidate grammar is tested for fitness over the
same initial test suite or even an evolving one to determine
whether it improves over the parent grammar. We use
a priority queue to keep improving the most promising
candidate grammars.

4. Control: we alternate between localization, transforma-
tion, and validation as they reinforce one another and
iterate until we find a fix.

We describe two refinements of our automatic repair ap-
proach and their realization in to the highly configurable gfixr
tool: (i) passive repair: we described this variant in our SLE’21
paper (Raselimo and Fischer, [2021); it takes as input the faulty
grammar G and repairs it against an input test suite that we
keep constant throughout an entire repair process; and (if) active
repair: this variant has access to an explicit membership ora-
cle and introduces a fest suite enrichment where we judiciously
generate new tests from each candidate grammar and use the
oracleto confirm the outcome of these tests.

Our approach is informed by two basic principles, the compe-
tent programmer hypothesis (“most programmers are competent
enough to create correct or almost correct source code”) (De;
Millo et al.l [1978)) and Occam’s razor (“entities should not be
multiplied without necessity”). In our context, the former means
that we can reasonably hope to construct G’ from G through a
sequence of patches, while the latter means that the repair uses
the vocabulary and the structure of the original grammar, and
minimizes the number of applied patches.



Evaluation. We have successfully used gfixr to repair 33 student
grammars that contain multiple, real faults. The passive repair
variant finds full fixes in all but four cases, where it returns
partially repaired grammar variants after 150 iterations. We
show that even these partially repaired variants have improved
in quality over their corresponding faulty input grammars. We
also show that passive repair produces grammars that generalize
well to new unseen tests that were generated from the target
grammars (i.e., the fixed grammars improved the recall score).
However, some of these repaired grammars are too permissive;
hence they over-generalize beyond the target language. We use
the precision computation to measure this over-generalization,
where we calculate the proportion of tests generated from the out-
put repair, in which the output grammar and the target grammar
produce the same result.

We develop and evaluate active repair to address this over-
generalization in passive repair. We show that the test suite
enrichment introduced by active repair produces repairs that are
less prone to over-generalization.Active repair achieves 100%
precision in about half of the input grammars. It also produces
high quality patches that capture the original intent of the gram-
mar. It achieves a 100% F1 score in eight grammars, compared
to none in the passive case.

Potential applications. An automatic grammar repair can be use-
ful whenever a given grammar needs to be patched to fit a given
test suite for the intended target language, as it eliminates the
manual repair efforts. However, automation also enables more
interesting application scenarios in various areas, for example
(i) teaching: patches can be integrated into an automated inter-
active feedback system (Barraball et al.l 2020) to help students
developing a grammar; (ii) grammar maintenance: patches can
be used to automate the adaptation of a base grammar to capture
a dialect from examples (D1 Penta et al., 2008); (iii) grammar
migration: patches can fix errors introduced by migration of a
grammar from one formalism (e.g., LR with precedences) into
another one with different capabilities (e.g., pure LL); (iv) gram-
mar inference: patches can replace the blind search in the inner
loop of genetic grammar learning algorithm (Crepinsek et al.|
2005}, |D1 Penta et al., [2008).

Summary of contributions. In summary, this paper makes the
following contributions enumerated below:

1. we present present the first approach to automatically
repair faults in context-free grammars;

2. we describe two variants of the approach that both use test
suites as specification for repair;

3. we realize this approach into a gfixr tool;

4. we demonstrate the effectiveness of our method over gram-
mars written by students - these contain real and multiple
faults; and

5. we compare the two repair variants of our method.

Relation to previous publications. This paper reports substan-
tial extensions of the work described in our paper “Automatic
Grammar Repair” (Raselimo and Fischer, 2021). That paper
was presented at the 2021 ACM SIGPLAN International Confer-
ence on Software Language Engineering (SLE’21). The main
extensions are the description and implementation of the active
repair variant, an extended evaluation over a wider range of
grammars with more faults, and a quantitative characterization
of both passive and active repair in terms of precision, recall,
and F1 scores.

2. Preliminaries

2.1. Context-Free Grammars

Grammar notation. A context-free grammar (CFG) or simply
grammar is a four-tuple G = (N,T,P,S) with NN T = 0,
V=NUT,PcNxV5andS € N. We call S the start
symbol and use A, B, C, ... for non-terminals in N, a,b,c,...
for terminals in 7T, X, Y,Z for grammar symbols in V, p,q,r
for productions or rules in P, w, x,y, z for words over T*, and
a,f,7,...for phrases over V*, with ¢ for the empty string and ||
for the length of @. In concrete examples, we also use italics and
bold typewriter font for non-terminal and terminal symbols,
respectively; we use normal typewriter font for structured
tokens with different instances such as identifiers. We write
A — yforarule (A,y) € Pand P4 = {A — y € P} for the rules
for A.

Derivations. We use aAB = ayf to denote that AB produces
ayp by application of the rule A — y € P and use =" for its
reflexive-transitive closure. We write =3 if A >y e RC P. We
call a phrase « a sentential form if S =" a. The yield of « is the
set of all words that can be derived from it, i.e., yield(a) = {w €
T* | @« =* w}. The language L(G) generated by a grammar G is
the yield of its start symbol, i.e., L(G) = {w e T* | S =" w}.

a is nullable if € € yield(a). We define the first (resp. last)
set of a phrase « as first(a) = {a | @ =" aB} (resp. last(a) =
{a | @ =" Ba}), and the precede (resp. follow) set of a symbol
X precede(X) = {a | S =" aaXp} (resp. follow(X) ={a| S ="
aXap}). Note that we extend the definitions of first and last so
that they map to sets of symbols rather than terminals. We use
firsty (@) = first(@) N U to denote the restriction of first to a set
U C T of terminals, and similar for the other functions.

We call u a viable k-prefix of a word w = uv if |u| < k and
S =" w' for av' € T*, and denote this by u <; w. We call a
viable k-prefix u <; w maximal if there is no a € T such that
ua <+ w. Hence, w <) w iff w € L(G) and, conversely, if the
maximal viable prefix u has length k£ < |w| then w has a syntax
error at position k + 1. We denote the the maximal viable prefix
of w by prefix(w).

Items. Anitemisarule A — « o 8 with a designated position
(denoted by e) on its right-hand side. We use P* to denote the
set of all items, i.e., all rules with all designated positions. We
often use items and rules interchangeably, but where necessary
we use p* to distinguish an item from the underlying rule p.



We define as the left (resp. right) set of an item the sets of
symbols that can occur immediately to the left (resp. right) of
the designated position (Raselimo et al.,[2019). Hence, the left
set of an item A — « e B contains all tokens that can occur at the
end of a and, if « is nullable, all tokens that in other contexts
can occur left of A.

left(A > v ofB) = last(a) U precede(4) if nulllable
last(a@) otherwise

ight(A — o e g) = | LTStB) U follow(A) —if f nullable
first(B) otherwise

2.2. Test Suites for CFGs

A test suite consists of a list of inputs for a system under test
(SUT) and corresponding expected outputs; the SUT passes a
test if it produces the expected output for the given input. In our
case, test inputs are words w € T, and the expected outputs are
either “accept” (if the test is positive, i.e., w € L) or “reject” (if
the test is negative, i.e., w ¢ L).

More specifically, a fest suite for a target language L is a
pair TS, = (TS*,TS™) of positive tests 7S* C £ and negative
tests 7S~ with 7S~ N £ = (. By abuse of notation, we also use
TS, for the union 7S* U TS~ of both sets. We require TS, to be
finite and consistent, i.e., TS* N TS~ = (. A test w is called a
true positive if w € TS™ N L, false positive if w € TS™ N L, true
negative if w € TS~ \ L, and false negative if w € TS \ L.

Since we are using test suites as specification data for the
repair, it is important to ensure that they adequately reflect the
syntactic structure of the target language. More specifically, for
most examples and experiments, we therefore use test suites
that are automatically generated from the EBNF version of the
respective target grammar to satisfy cdrc (Limmel, [2001b) cover-
age. For the running example, the cdrc test suite 7S, contains
79 positive tests. For patch validation, we also created a test
suite that contains all valid bigrams.

2.3. Spectrum-Based Fault Localization in CFGs

Software fault localization (Abreu et al.| 20065 Jones and
Harrold, 2005} Naish et al., 2011} Renieris and Reiss, 2003}
Wong et al., | 2014) techniques attempt to identify likely bug loca-
tions in software. Spectrum-based fault localization techniques
record execution information called a program spectrum for a
program when running over a given test suite. From the spec-
trum, they then compute suspiciousness scores for each program
element (e.g., method or statement), which can be interpreted as
the likelihood that that element contains a fault. Different for-
mulas (e.g., Tarantula (Jones and Harrold} |2005), Ochiai (Ochiai
(1957)), or Jaccard (Chen et al.}2002)) have been proposed for
the score computation, but they all combine in different ways
the numbers of passed resp. failed tests in which each program
element is executed resp. not executed.

Spectrum-based fault localization has also been used to iden-
tify the rules that cause a parser to accept words outside (resp.
not accept words within) the expected language (Raselimo et al.,
2019; [Raselimo and Fischer, 2023). We localize faults at the

level of individual symbols in rules (Raselimo and Fischer,
2023), which reduces the number of possible fault locations
compared to a rule-level localization, where we would need to
iterate over all positions in the identified rules.

We have experimented with different variants of item spectra,
but for the repair we can consider localization as a black box,
and model a spectrum as the union of two different relations
~,,~xC P* X TS s between items and tests that encode test exe-
cution and test outcome. We then define pass(p®) = {w € TS, |
p* ~, w}and fail(p®) = {w € TS, | p* ~x w} as the sets of
passing and failing tests executing p up to the designated posi-
tion, respectively. We can then define the usual counts Npass =
[ Up» pass(p®)l, ep(p®) = Ipass(p®)l, and np(p*®) = Npass—ep(p®),
and correspondingly, N,y = |U), fail(p®)l, ef (p°®) = [fail(p®)l,
and nf(p®) = Nrai — ef (p®).

We model the suspiciousness scores with an abstract scoring
function score : P* — R* U {0}, which must satisfy score(p®) >
0 = fail(p*®) # 0. The usual formulas can be used based on the
definitions of the counts given above.

We finally use the specialized k-max tie breaking mechanism
(Raselimo and Fischer, 2023) in favour of “longer” items from
the same rule, i.e., whenever score(A — a ® Xw) = score(A —
aX o w), we set the score of the “shorter” item to zero and
so remove it from the pool of possible fault locations. This is
based on the left-to-right reading order of the parser: since all
executions that got to X also got over X, the error cannot be
before X.

Localization Example. Table [I] shows the counts aggregated
from the grammar spectrum that we collected by running the
CUP parser generated from the example grammar Gr/n), (see Fig-
urem) over the test suite 7Sy, as well as the Ochiai scores and
corresponding ranks for the items p*® with ef(p®) > 0. Here,
A:n:m denotes the item A — « e w from the n-th alternative
production for A where || = m. The Ochiai score of an item p*®
is given by

ef(p*)
V(ef(p*) + nf(p*)) X (ef(p*) + ep(p*))

score(p®) =

The last two columns show the items ranked by score. On the
left, all elements are ranked, with ties indicated by a preceding
“="; on the right, ties between items from the same rule are
resolved as described in Section[2.3

Note that the localization phase identifies only 7 out of 172
items as suspicious; this substantially reduces the number of
patches attempted, and is a main reason for the good perfor-
mance of our approach. Moreover, it ranks the actual fault
location as the most suspicous amongst those seven locations
and tries to patch there first, thus prioritizing the eventual fix,
but not shutting out other options.

Note further that the first fault blocks the second fault in
namelist, and the corresponding item is scored zero in the first
iteration; however, after the first partial repair, this one is ranked
highest, leading to a fix of both faults in just two patches.



Table 1: Spectral counts, Ochiai scores and ranks for G’%v over TSqpy.

item ef | ep | nf | np || score rank

program:1:0 3165| 0 8 021 | =12 | -
program:1:1 3165| 0 8 021 | =12 | -
program:1:2 3165| 0 8 021 | =12 | 6
program:2:0 3 8 0] 65 0.52 =7 | -
program:2:1 3 8| 0|65 0.52 =7 | -
program:2:2 3 8| 0|65 0.52 =7 1|4
body:1:1 31671 0| 6 0.20 15 |7
body:2:1 31 6| 0] 67 0.58 6|3
name:1:0 3 91 0| 64 0.50 | =10 | -
name:1:1 3 9| 0] 64 0.50 | =10 | 5
name:2:1 3 1 0] 72 0.87 =4 | -
name:2:2 3 1 0|72 0.87 =4 1|2
name:3:0 3 o 0|73 1.00 =11 -
name:3:1 3 o 0|73 1.00 =11 -
name:3:2 3 o 0|73 1.00 =111

3. Repair Framework

In this section, we formalize the individual elements of our
repair approach. The overall structure of the repair algorithm
that follows the find-and-fix cycle mentioned in the introduction
is shown in Algorithms|[T]and [2]; more implementation details
are given in Section |7}

3.1. The Repair Problem

We assume that we have a test suite TS, = (TS*, TS™) for an
unknown farget language L that is comprised of positive tests
TS* C L and negative tests TS~ with 7S~ N L = 0, and an initial
CFG G that fails at least one test in 7S, (i.e., ST ¢ L(G) or
TS~ N L(G) # 0). The repair problem is then to construct from
TS, and G a “similar” CFG G’ that accepts all positive tests (i.e.,
TS* C L(G")) and rejects all negative tests (i.e., TS" N L(G’) = 0)
and so approximates £ better than G. We require in the following
that the test suite 7S s is viable for G, i.e.,

(i) it detects at least one fault in G, i.e., (TS™ N L(G)) U
(TS*\L(G)) # 0;

(ii) itis constructive,i.e., TS~ C L(G).

The first condition ensures that the test suite is strong enough, so
we can localize and fix, while the second ensures that negative
tests are not arbitrary token sequences but are wrongly accepted
by the (current) grammar candidate and thus contain enough
structure that can be exploited for repair attempts. In the remain-
der of the paper, we assume an initial test suite 7S, = (TS*, TS™)
that is viable for the initial CFG G.

However, the problem is underspecified and a repair can
“overgeneralize”, i.e., TSt C L(G’) ;{ L. We can therefore eval-
uate the quality of our repairs only through manual inspection
or based on performance over an additional validation suite.

3.2. Patches, Repairs, and Fixes

A grammar patch p is simply a transformation from one
CFG G = (N, T, P,S) into another CFG G’ = (N',T',P’,S");
we denote this by G ~», G’. A patch G ~~, G’ is viable with
respect to a viable test suite 7S if G’ performs no worse over
TS, than G, i.e.,

i) LG)NTS* C L(G')NTSH;
(ii) LG)NTS 2 L(G)YNTS™;
(iii) Yw € TS - prefixg(w) =< prefixg (w)

Hence, the patched grammar accepts more of the positive and
fewer of the negative tests, and accepts longer input prefixes of
the tests that it rejects. A viable patch is an improvement if one
of the set inclusions or prefix relations is strict, and a partial
repair if one of the set inclusions is strict, i.e., G’ fails fewer
tests than G. It is a full repair or a fix for G if G’ passes all tests,
ie., TS* C L(G)and TS N L(G") = 0.

3.3. Induced Patches

In the following sections, we define a series of transforma-
tions that compute a patch item ¢* from a suspicious item p°.
However, we cannot simply patch the grammar by replacing p
with g in P: if p was used in at least one passing positive test
case (i.e., p* ~, w for aw € TS") then an in-place update can
make G’ fail a test case that G was passing, and so render the
patch unviable. We therefore need to control update by spectral
counts.

Hence, given G = (N, T, P,S) the patch G ~(,, G is
induced by the pair (p*,q*)if G’ = (N, T, P’,S), and

> {Pu{q}\{p} ifep™(p) =0

- P U {q)} ifep*(p®) >0

By abuse of notation, we also write p ~ g (resp. G ~, G)
to mean G ~(, 4 G’ if G and G’ (resp. p) are clear from the
context or are immaterial.

3.4. Good Tokens, Bad Tokens

The second essential ingredient to make our approach scal-
able is that we limit the repairs that are attempted at each repair
site through explicit conditions that capture when a patch is
likely to yield a repair. These conditions are formulated over the
grammar structure (using predicates such as first and follow),
pass and fail counts, and lexical context around the failure loca-
tions, aggregated over the individual false negatives.

Recall that w = uabv ¢ L(G) and ua <; w maximal mean
that the (first) syntax error occurs between a and b. We call 4,
which is the last token successfully consumed just before the
parser reports the syntax error, the good token for w and b the bad
token. A pair (a, b),, of good and bad tokens for w can be seen
as a poisoned pair in G (Raselimo et al.| 2019) and our repair
attempts to break this poisoned pair property for (a, b),,. We
define the sets of good tokens 7', and bad tokens 7', for an item p
as the sets of good and bad tokens from the failing tests in which
p is executed, i.e., (T;,7,) = Ul(@,b)y | p ~x w,w € TS}
(where the union is taken componentwise). Examples of these
will be shown in subsequent sections.



Algorithm 1: The passive repair algorithm

Algorithm 2: The active repair algorithm

input :A faulty grammar G = (N, T, P,S)
input :A test suite 7S
output : A fully repaired variant G" or L
10«0
2 (P, F,Pre) « run_tests(G,TS)
3 Q.enqueue(G, (P, F, Pre, o))
4 Seen — {G}
5 repeat
6 (G',{Pg,Fg,Preg,_)) < Q.dequeue()
7 Seen.add(G")
8 Ranks < localize(G’,TS)
9 Cands < transform(G’, Ranks)
10 for C € Cands \ Seen do

1 (Fc,Prec) <« run_tests(C, TS)

12 if Fc = 0 then

13 | return C

14 if improves((Fg, Preg ), {Fc, Prec)) then
15 | Q.enqueue(C,(Fc, Prec, Ranks[Cl))

16 until Q.empty()
17 return L

3.5. Patch Validation against Sample Bigrams

We can prevent some over generalization by providing neg-
ative tests, which can be seen as pre-emptive answers to some
membership queries. In the active repair setting we can up-
date this set automatically during the repair process, but in the
passive setting we cannot. We can, however, extract more infor-
mation from the positive tests and use this to check whether a
patch can be valid or not. More specifically, given a test suite
TSy = (TS*,TS™), we collect all sample bigrams Tr(TSy) =
{(a,b) | w = xaby € TS"} that occur in the positive tests, and
check can also occur as sample bigrams; if not, we reject the
patch. Note that is of course a heuristic, it relies on the fact
that 7S* provides enough examples to approximate the follow-
relation well enough through the bigrams. Note also that we
can over-approximate the bigrams by simply assuming all pairs
of tokens are possible (i.e., I'2(TS,) = T x T); in this case, all
patches are trivially validated, and we have to rely on the fitness
function (see below) to rule out "bad" candidates.

3.6. Passive Repair

Algorithm[T|shows the passive repair loop that implements
the find-and-fix cycle described earlier. It dequeues the top-
ranked faulty grammar variant G’ from a central priority queue
Q that manages all repair candidates, runs localize to deter-
mine possible repair sites (i.e., suspicious items), and then calls
transform to try and apply the patches described in more detail
in the following sections. For each unseen new candidate C
resulting from applying a patch, it uses run_tests to generate
an executable parser and run it over the test suite 7S. If the can-
didate C fails no tests, it is returned as a full repair. Otherwise,
if C improves on its parent G’, it is enqueued.

input :A faulty grammar G = (N, T, P,S)
input :A test suite 7S,
input :A boolean valued oracle O

output : A fully repaired variant G’ or L

Q « run_oracle(TS)
Ranks <« localize(G’,Q,TS)
Cands « transform(G’, Ranks)
for C € Cands \ Seen do
L TS « TS U generate_tests(C)

(Fg, Preg') « run_tests(G’,TS)
14 for C € Cands \ Seen do

10«0

2 TS « TS, Ugenerate_tests(G)
3 Q.enqueue(G,_)

4 Seen « {G}

5 repeat

6 (G’,_) « Q.dequeue()

7 Seen.add(G")

8

9

—
[ S

[
w

15 (F¢, Prec) « run_tests(C, TS)

16 if Fc = 0 then

17 | return C

18 if improves({Fg , Preg ), {Fc, Prec)) then
19 L Q.enqueue(C, (F¢, Prec, Ranks[C]))

20 until Q.empty()
21 return L

The priority queue Q contains pending grammar candidates
derived from improving patches. It is keyed by a three-tuple
(F, Pre,R), where F is the number of failing tests, Pre is the
total length of the successfully parsed prefixes, and R is the
localization rank of the patched item from which the candidate
was derived. We use lexical order to determine the priority. The
algorithm also maintains a set of Seen candidate grammars to
prevent non-termination.

The localize module determines potential repair sites in
the faulty grammar variant, and provides further spectral in-
formation such as basic counts (ef, ep,nf,np) and the aggre-
gated sets of good T, and bad tokens T, for each item p to the
transform module.

3.7. Active Repair

In the passive repair setting, we repair against an initial test
suite as target specification, but keep this constant throughout
the process; in particular, we also use this to localize (i.e., find
repair sites) and validate new candidates as they are constructed.

If we have access to a membership oracle (e.g., a black-box
parser) for the target language L, we can improve the localiza-
tion and validation steps by generating new tests from grammar
candidates as they are constructed, relying on the oracle to deter-
mine the true status of these unseen tests. Since this is similar



to Angluin’s active learning (Angluin} 1987ﬂ we call this the
active repair.

Algorithm 2] presents a high-level description of this active
repair approach. We extend and build on the passive repair
algorithm shown in Algorithm[I] There are several differences
in the flow of the search that we highlight. First, Algorithm 2]
takes as input an extra variable, a boolean valued oracle O.

Second, in active repair we generate tests 7S¢ from each
candidate C that we add to the growing pool of test cases TS,
which already includes the user provided target test suite 7S,
and the test suite 7S generated from the input grammar G. We
call the union of TS, and TS test suites an initial test suite,
and denote it by 7S;,;. Each candidate C is tested for fitness
over the growing pool 7'S and enqueued if it improves over
its parent. Note that TS is global and monotonously growing.
Candidates therefore get tested for fitness against a test suite that
includes tests not derived from themselves, thus improving the
fitness selection. The algorithm returns as a fix a candidate that
produces test outcomes that are consistent with the language
accepted by the oracle O, i.e., passes all tests in 7S and thus
TSinil~

4. Symbol Editing Patches

Our first group of patches is modelled on the basic string
editing operations, (i.e., deletion, insertion, substitution, and
transposition), applied to the symbols on the right-hand sides of
the rules.

4.1. Symbol Deletions

We first consider symbol deletion patches. These are useful
to fix bugs where the grammar fails to properly handle optional
elements. Consider for example a test suite TS’%V D TS5y (see

for a complete test suite) that also includes the

three (positive) tests:

program a define a() begin relax end begin relax end

program a
define a() -> int begin relax end
begin relax end

program a begin a() end

These tests fail under G,,  because neither paramlist nor arglist
are nullable, and their addition to TS75y can be seen as a “change
request” to G to allow empty formal parameter and argument
lists.

The localization identifies amongst others the following three
items as suspicious:

Toy

fdecl — defineid ( e paramlist) body
fdecl — defineid ( e paramlist) ->type id body
name — ...|id ( e arglist)

In these all cases, the sets of good and bad tokens are 7% = { ('}
and T~ = {) }, respectively. We use the former to check that

"'Note that Angluin also requires an equivalence oracle to decide termination
of the learning process; we still use the initial test suite for this purpose.

the designated position in the item is actually correlated to the
lexical error contexts and, specifically, that the item’s left set
contains only good tokens. This is trivially the case here, since
the left sets of all three items are { ( } as well. We use the latter
similar to the way a parser’s panic mode error recovery uses
synchronization tokens: starting at the designated position, we
delete symbols from the rule until this synchronizes the rule
with the bad tokens, i.e., until the right set of the item after the
deletion contains all bad tokens. This is again trivially the case
here, since in all three cases the corresponding right sets after
the deletion of the first symbol (paramlist resp. arglist) are { ) }
as well.

However, we need to be careful that we are not adding rules
with exposed nullable symbols, which can use an e-derivation
to accept the new tests but which allow unintended derivations
and thus overgeneralize. Consider the variant G/, :

name  — ...|1id ( e expr namelist )
namelist — namelist , expr | €

Deleting the expr-symbol at the localized position in the name-
rule allows us to synchronize on ) because namelist is nul-
lable but this also allows for example a derivation name =g
id (namelist) =7, id ( , id). This overgeneralization could
be prevented by additional explicit counter-examples, but we
instead rely on a careful formalization of the synchronization
patch and corresponding patch validation.

Definition 4.1 (synchronization). Let p = A — « e Sw be an
item in P* with lefi(p) C T, .

(a) If w = Xy with X non-nullable and T, c first(X), let
d(p,B) = A = a e w be the result of deleting B at the designated
position. Then p ~» d(p, B) is a synchronization patch.

(b) If w is nullable and T, C follow(A), let d(p, w) = A —
ae be the result of deleting Bw at the designated position. Then
p ~ d(p, Bw) is a panic mode synchronization patch.

We validate synchronization patches by checking that the test
suite contains all bigrams that are newly possible by the deletion
of 5. More specifically, we compare the left- and right-sets in
G’ around the repair site against the bigrams.

Definition 4.2 (synchronization validation). Letp = A — e
Bw be an item in P°*. The synchronization patch G ~»y, 5 G is
validated over TS ¢ if left; (d(p, B)) X rights; (d(p,B)) € T2(TSy).

In the running example, the deletions of paramlist and arglist
both only expose the single "repair bigram" ( (, ) ), which oc-
curs in Fz(TS’%y).

Example Repair. gfixr patches the baseline grammar G, against

TS’%), as expected, by adding the three rules '

fdecl — defineid ( ) body
fdecl — defineid () ->type id body
name — ...|id ()

The rules are created from the corresponding baseline rules by
the deletion of a single symbol at the identified fault locations



shown above, and are added to the grammar, rather than re-
placing the baseline rules, because the latter are used in other
passing tests. gfixr finds this fix with three patches in roughly
two minutes, generating 26 candidate grammarsE] Note that the
initially top-ranked item param — e typearrayid induces a
rule param — & through a panic mode synchronization, but this
fails the patch validation and gets ruled out because FZ(TS’%y)
does not contain the induced bigram ( (, , ).

In the variant G/, with a nullable namelist-rule, the syn-
chronization deletes both the expr and the subsequent nullable
namelist symbols in the name-rule (and similarly for the fdecl-
rule). gfixr finds the corresponding fix with three patches in less
than 90 seconds, generating 18 candidate grammars.

As an example for the deletion of longer sequence of sym-
bols consider a faulty version of G, (see Figure E[) where the
first fdecl-rule is missing (e.g., due to a missing ?-operator
around the sequence -> type id at the EBNF level). Here, gfixr
introduces a copy of fdecl-rule without the segment -> type id.
It finds this single patch fix in roughly 30 seconds, generating
only five candidate grammars.

4.2. Symbol Insertions

Symbol insertion patches are useful to fix bugs where gram-
mar developers have missed one or more symbols in a rule, or
even an entire rule (e.g., the second fdecl-rule in G, ). Note
that we only insert a single symbol and rely on repeated repairs
to grow larger patches symbol by symbol, in order to limit the
number of different repairs that we need to consider at each sus-
picious location. In contrast to symbol deletion patches, where
we effectively check that the bad tokens are a subset of the right-
set (i.e., T, C right(A — @ e w)) and the patch thus covers all
failing tests associated with the item, we check here only for a
non-empty intersection (i.e., T; Nright(A —» a e w) # 0), i.e.,
we only require the patch to "eat up" at least one bad token, to
allow a patch to (partially) repair a subset of failing tests at a
time.

Definition 4.3 (symbol insertion). Let p = A — « ® w be an
item in P* with lefi(p) € T, and i(p,X) = A — « e Xw be
the result of inserting X € V at the designated position of p. If

T, N right(i(p, X)) # 0, then p ~> i(p, X) is an insertion patch.

We validate insertion patches by checking the same condition
as for synchronization patches, with the designated position
before the inserted symbol; we do not check the symmetric
condition for the designated position after the inserted symbol,
because the insertion could be part of a larger patch that is found
through repeated insertions.

Definition 4.4 (insertion validation). Let p = A — a o w be
an item in P* and X € V. The insertion patch G ~+, x) G’ is
validated over TS ¢ if left; (i(p, X)) X rights, (i(p, X)) € I'2(TSy).

2All runtimes given in Section E]to Section@were measured as wall-clock
time on an otherwise idle standard 3.20 GHz desktop with 6 cores and 16 GB
RAM. The evaluation in Section [§uses a different computational setup, and
times are not necessarily comparable.

Example Repair. 1If we remove the rule

fdecl — defineid () ->rype id body

from G, , gfixr re-introduces it with three patches, each inserting
an individual symbol to form the segment -> fype id. It takes
53 seconds, generating 13 candidate grammars.

4.3. Symbol Substitutions

Substitution patches fix bugs where grammar developers
have used a wrong symbol, as shown in the example from the
introduction. Such bugs are particularly difficult to detect when
the grammar is either too permissive (e.g., name — id [ expr])
or too restrictive, in a way that is only uncovered by structurally
complex tests (e.g., paramlist — param | param , param). A
substitution patch replaces the symbol at the designated position
by another one that “eats up” at least one of the bad tokens.

Definition 4.5 (symbol substitution). Let p = A — o ¢ Xw be
an item in P* with left(p) C T;, Y € V, and s(p,Y) = A —
a o Yw be the result of replacing X at the designated position
by Y. If T, Nright(A — a e Yw) # 0, then p ~ s(p,Y) is a
substitution patch.

In contrast to insertion patches, substitution patch validation
checks both sides of the repair site, to ensure the substituted
symbol fits tightly.

Definition 4.6 (substitution validation). Letrp =A — o e Xw
be an item in P* and Y € V. The substitution patch G ~,y) G’
is validated over TSy if

(i) leftg (s(p,Y)) X rights (s(p,Y)) CI'2(TSy), and
(ii) leftq,(A — aY e w) X right; (A — Y e w) C I (TSy).

Substitution patch validation has two specific effects. First,
it leads to a preference for deletions over substitutions with nul-
lable symbols, which in turn leads to better grammars. Second,
it leads to a preference of insertions over substitutions; in par-
ticular, a "compound” patch A —» v e Xw ~» A — a¥YZ e w
is realized via A — «Y e Xw and not via A — «aY e w, which
reduces the search space.

Example Repair. Substitutions, deletions, and insertions can
interact to create larger repairs. Consider for example a student
implementation of the language of G,, where the rule: factor —
( expr) is missing, so that it rejects bracketed expressions. The
following five tests fail from 7Sy,

program a begin write 0 * (0) end
program a begin write not(0) end
program a begin a(0, (0)) end
program a begin write(0) end
program a begin a((0)) end

The top-ranked item name — oid [ simple ] fails the precon-
dition on the good tokens for each potential patch, and gfixr
tries to patch the factor-rules which are ranked next. There are
seven possible insertions and substitutions, which all pass the
validations, but the substitution patch factor — e not factor ~~



factor — e ( factor improves most, as it accepts longer prefixes.
The resulting grammar is therefore picked in the next iteration,
where an insertion patch inserts the missing )-token, completing
the fix. gfixr generated 61 candidates in roughly 3 minutes and
30 seconds. Note that this already constitutes a fix, because it
makes all tests pass, even though it does not fit the intent (which
would have also replaced the factor at the right-hand side of the
rule by expr).

4.4. Symbol Transpositions

The final symbol edit patch we consider is symbol transpo-
sition, which swaps the two symbols following the designated
position. While this is not a very common bug pattern, it does
occur in connection with list rules. For example, consider the
following variant of G, that has the following bug in the idlist-
rule

Toy

idlist  — ididlisttail

idlisttail — e id , idlisttail | &
that leads to a pair of adjacent id-tokens in the beginning and
a trailing comma at the end of an idlist. gfixr generates a patch
that swaps the id and , tokens in idlisttail, which in turn fixes
the rule. It found this in a single iteration, in about 1 minute 20
seconds, generating 23 candidates.

Definition 4.7 (symbol transposition). Let p =A - a e XYw
be an item in P* with left(p) C T;, andt(p) =A > a e YXw be
the result of swapping the symbols X and Y at the designated
position. If T, Nright(t(p)) # O, then p ~> t(p) is a transposition
patch.

Transposition patch validation follows the same lines as
substitution patch validation, and checks the corresponding con-
ditions on the three items A — o e YXw, A — aY e Xw, and
A—-a¥Xew.

Definition 4.8 (transposition validation). Letrp = A — «a e
XYw be an item in P*. The transposition patch p ~~ t(p) is
validated over TSy if

(i) leftg (t(p)) X rights, ({(p)) € I'2(TSy), and
(ii) left; (A — aY @ Xw) X right; (A — Y @ Xw) C I(TSy).

(iii) left; (A — oYX o w) X right; (A — aYX e w) CT'r(TSy).

5. Listification Patches

Our second group of patches is geared towards more struc-
tural changes in the grammar. In this section, we introduce
two “listification” patches, right recursion introduction and its
generalization, list synthesis.

5.1. Right Recursion Introduction

Right recursion introduction patches are useful to handle
bugs where the grammar fails to properly handle repetitions.
Consider for example a variant of G, submitted by a student

where the the body-, vdecllist-, and vdecl-rules in G%) are re-
placed by the following rules:

body — beginvdecls stmts end
vdecls — type id idlist ; ® | &

This allows only at most one variable declaration (despite the
intent of the name vdecls) and thus fails the test

program a begin bool a; e bool a; relax end

with the e-symbol also indicating the error location observed
in the input. The obvious fix is to restore the intent behind the
vdecls-rule by making it right-recursive.

Definition 5.1 (right recursion introduction). Let G = (N, T,
P,S), G’ = (N,T,P',S) be CFGs, and p = A — a® € P* a
reduction item with first(A) C T~.

(a) If A is nullable and A — € € P, let P = P\ {p} U{A —
aAl.

(b) If A is nullable and A — € ¢ P, let P = P\ {p} U{A —
aA,A — &g}

(c) If A is not nullable, let P = P U{A — aA}.
Then G ~~g,(») G’ is a right recursion introduction patch.

Right recursion introduction checks if A is nullable to decide
whether to allow empty lists or not; this is a heuristic, but further
patches can refine the repair, if required. It also checks for an
existing e-rule before adding it, to prevent introducing conflicts.

Note that this listification patch can be seen as a special case
of symbol insertion that always uses an in-place grammar update.
This can lead to an overgeneralization, because all occurrences
of A are listified at the same time. We can prevent this by
checking that the bigrams introduced by the recursion actually
occur in the test suite.

Definition 5.2 (listification validation). Let p = A — ae be
an item in P*. The listification patch G ~»¢,) G’ is validated
over TSy if left; (A — a @ A) X right;,(A — a e A) CI'2(TSy).

In the example, dfixr finds the single patch fix vdecls —
type id idlist ; vdecls in roughly 30 seconds, generating only
five candidate grammars.

5.2. List Synthesis

Right recursion introduction does not generalize to all rep-
etitions in a grammar. We identify two scenarios where it falls
short and cannot be applied as a patch. First, when a repetitive
structure is used in a local context and occurs in the middle of
the definition of some A-production. Assume, for example, that
the body-rule in G, is replaced by the following rules:

body — begin stmts end
| begintypeid ; e stmts end

This allows at most one variable declaration captured via the
sequence type id ; in the middle of the second alternative of
the body-rule. This variant of G, thus fails one of the tests,

program a begin bool a; e bool a; relax end



with the e-symbol also indicating the error location observed in
the input. Right recursion introduction cannot fix this because
the repetition needs to be spliced into the middle of the second
body-rule, but there is no non-terminal symbol that “summarizes’
the elements to be repeated.

Second, right recursion introduction cannot handle delimiter-
separated repetitions. These list structures are omnipresent in
most languages: think of a comma-separated list of function
parameters in popular programming languages or a semicolon-
separated list of SQL queries and many more others. The list
synthesis patch handles such cases.

We can further extend the machinery and extract the next
token at the right-hand side of the bad token before parsing stops
due to a syntax error. We call this token the right token. We
use T, for a set of right tokens for an item p executed in failing
tests. We only use these tokens for patches that synthesize list
structures.

s

Definition 5.3 (list synthesis). Letr G = (N,T,P,S) be a CFG
andp=A - ayewanitemin P*. If G’ = (N, T,P,S) is
a CFG withN' = NU{B}, B¢ N,and P = P\pU{A —
ayBw,B — ByB,B — &} then G ~~g,(5 G’ is a list synthesis
patch, provided:

(a) B is nullable, T; C lef(A —» ayew) and T, Nright(A —
ay e Bw) # 0.

(b) B is not nullable, T+ C left(A — ayew), r,n right(B —
*ByB) # 0, and T, N right(B — B e yB) # 0.

The first scenario that we sketched out in the motivation for
the need for list synthesis patch, is handled by case (a) in the
above definition, where the separator symbol S is empty. Case
(b) synthesizes S-separated list elements. In practice, however,
this transformation needed extra control flags that restrict its
applicability. For example, in the example repair in Section
[.2] where the fix required multiple iterations, list synthesis gets
better fitness in the first iteration because it consumes more of
the input than the partial insertion patch that ultimately leads
to the full fix. We, therefore, only accept list synthesis patches
if their application leads to fewer test failures than the parent
faulty variant.

Example repair. If we modify the name-rule for function call
expressions from G,

name — ...|id (expre ) |...
the following four tests fail
program a begin a((a), (a), 0) end
program a begin a(a, a, a) end
program a begin a(6, 0, 0) end
program a begin a(@, 0, 0) end

and the sets of good, bad, and right tokens are T+
T-={,}and T* ={(, a, 0} respectively.
gfixr reconstructs it correctly to the following rules.

{),a, 0},

name — ...|id (exprexpr_list) |...

expr_list — , expr expr_list | €
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Note that the actual patch contains a randomly generated identi-
fier for the new non-terminal introduction, but we use expr_list
here for clarity. gfixr generated 25 candidate grammars and took
1 minute and 40 seconds to find the patch.

6. Language Tightening Transformations

The example grammar in Figure |1| contains three different
quirks which allow procedure calls without argument lists, call
expressions as [values, and indexing expressions as statements.
It does not distinguish properly between simple identifiers, array
indexing expressions, and function calls, and instead subsumes
all three under the non-terminal name:

assign — name | name : :=expr | name : := array simple
input — read name

factor — name | ...

name — id|id [ simple] |id (expr exprlist)

This means that the compiler’s semantic analysis must filter out
idiosyncratic constructions, such as

o simple identifiers as statements (i.e., function calls without
argument lists), e.g.,

program a begin a end

e array indexing expressions as statements, e.g.,

program a begin a[0] end

e function calls as Ival in assignments, array initializations,
and input statements, e.g.,

program a begin a(0) =0 end
program a begin a(0) ::= array 0 end
program a begin read a(0) end

e array indexing expressions as /val in array initializations
(which would require nested arrays), e.g.,

program a begin a[0] ::= array 0 end

These idiosyncrasies should (and can) already be filtered out by
syntactic analysis. The common cause of these and similar issues
is that the grammar is too permissive, i.e., £ € L(G). A repair of
this permissiveness requires a language restriction or tightening,
which can be specified by negative tests. We focus here on false
positives or counter-examples because arbitrary negative tests do
not provide enough structure to guide the repair. In the following,
we look at specific tightening patches, rule deletion and non-
terminal splitting or "downcasting", de-listification patches, and
a patch that tightens list structures by pushing down some list
elements. Note that we apply the language tightening patches
only at reduction items.

6.1. Rule Deletion

Clearly, deleting a rule tightens the language; the only non-
trivial aspect is to ensure that this actually is a viable patch, i.e.,
that the deletion does not inadvertently block valid derivations
in G of positive tests.



We can ensure this if the rule is only ever used in reductions
in false positives (i.e., can be seen as an error production), and
if the patch is applied as an approximation from above (i.e., all
positive tests are already passing without it):

Definition 6.1 (rule deletion). Let G = (N, T, P,S) with TS™ C
L(G), p = A — ae € P*® a reduction item, and ef (p) > 0. If
G=(N,T,P,S)isa CFG with P" = P\ {p} then G ~yp,) G’
is a rule deletion patch.

The gfixr implementation uses a relaxed condition that sim-
ply requires that the rule has not been used in parsing any true
positive (i.e., ep(p) = 0 and fail(p) C TS™), although this could
in principle delete it when it would still be used for a true positive
after another patch.

6.2. Non-terminal Splitting

In practice, the conditions of the rule deletion patch are
rarely met, because the rule is used both in failing and passing
tests, and the error only manifests in certain rule combinations.
Consider for example the rule input — read name, which only
fails in combination with name — id ( arglist).

We therefore need an enabling patch that moves rules into
the right contexts (similar in spirit to cdrc coverage (Limmel,
2001b))) and so separates out passing and failing rule applica-
tions.

Definition 6.2 (non-terminal splitting). Let G = (N,T,P,S),
p =A — aBwe € P* a reduction item with Pg = {B — Bi}i>1,
ep(p) >0, ef(p) > 0, and fail(p) C TS™. If G’ = (N, T, P’,S) is
a CFG with P" = P\ {p} U{A — aBiw} then G ~g, 5 G isa
non-terminal splitting patch for B.

Note that splitting a non-terminal only in one of the rules
A; = «;Bw; can introduce parsing conflicts. In the implemen-
tation of gfixr, we split across all rules A; — «@;Bw; where the
split non-terminal occurs.

Example Repair. We repaired the idiosyncrasies in G, with a
step, (van Heerden et al.| [2020)) test suite with 159 positive tests

and seven negative tests, including the test

program a begin a ::= 0; a end

in addition to the six tests shown above. gfixr finds the following
fix in 7 minutes and 36 seconds in 9 generations, after testing
125 candidates:

stmt — id (arglist)
| id::=expr|id [expr] ::i=expr|id ::= array simple
| cond | ...

input —» readid | readid [ expr]

The key patches are several splits of name in different contexts,
followed by the deletion of the split rule variants that are only
used in parsing negative tests. Note that splits at irrelevant con-
texts (e.g., in factor) are ruled out because they do not improve
the grammar.

This result is arguably not too far away from a manual repair
(that may introduce a proper /values non-terminal to factor out
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the commonalities in assign and input rules) but the quality of
gfixr’s repairs obviously depends only on the completeness of
the test suite and not on the intent. In this case, the first six tests
only indicate errors in the first stmt of a stmtlist, and the seventh
test case was crucial to confine the splits to assign and input, and
to prevent them from recursively “bubbling up” through stmt to
stmtlist.

6.3. Token Splitting

The need for token splitting occurs when multiple alternative
lexemes that belong to different contexts are subsumed under the
same structured token, (e.g., a grammar with an ADDOP-token
that captures the lexemes “+” and “ -, but without a proper
(unary) MINUS-token). Due to the considerable freedom the CFG
formalism allows grammar developers, such faults are prevalent
and are difficult to spot, especially, under assumptions that a
stable lexer-parser interaction is made available, and the focus is
purely on the context-free syntax. For example, the two Pascal
grammars that were proved non-equivalent by Madhavan et al.
(2015) have different terminal sets, one of the grammars defines
specific terminal symbols for the basic types such as BOOLEAN
while the other subsumes them under identifiers. We extend and
build on the non-terminal splitting transformation introduced
above to implement token splitting.

Definition 6.3 (token splitting). LetG = (N,T,P,S),p=A —
aawe € P* a reduction item and fail(p) € TS™. Let RE =
{(TU{SL}L,Z,PLU{S, > t|teT},SL} be alexical grammar
that captures structured tokens, a — b; with b; € (X U T)".
IfG' = (N,T',P',S) is a CFG with T" = T \ {a} and P’ =
P\ {p}U{A — abw} then G ~>+,q G’ is the token splitting
patch for the structured token a.

Note that gfixr’s current implementation of the token splitting
transformation ignores some of the common lexer policies, such
as longest match and rule ordering. Their integration is not
straightforward, and we leave its investigation for future work.

Example repair. Consider, for example, a student’s implemen-
tation showing the rules for simple, termlist, and a structured
token ADDOP

simple — ADDOP termlist o | termlist
termlist — term | termlist ADDOP term
ADDOP — - | + | or

The lexer returns the same token ADDOP for lexemes +, - and
or. The parser fails six negative tests, including the following,

program a begin a := array or 0 end
program a begin write or 0 or 0 end
program a begin write 0 = or 0 end

because it wrongly accepts or as a prefix-operator.

gfixr finds the fix the fault in two iterations in under ten min-
utes, generating 225 candidate grammars. In the first iteration,
gfixr splits all occurrences of the ADDOP-token in the simple- and
termlist-rules into the three lexemes. This gives us

simple — - termlist | + termlist | or termlist | termlist
termlist — term | termlist - term | termlist + term | termlist or term



In the second iteration, a rule deletion patch is applied to rules
simple — + termlist and simple — or termlist, which leaves us
with a full fix:

simple — - termlist | termlist
termlist — term | termlist - term | termlist + term | termlist or term

6.4. Recursion Elimination

Recursion elimination is another language tightening trans-
formation like rule deletion and splitting transformations. Unlike
other tightening transformations, it specifically restricts overly
permissive repetitions in a grammar. It can be seen as an inverse
of the listification transformations introduced in Section[5 To
illustrate grammar bugs that this transformation targets, consider
the following expr-rules in G,

expr — simple relop simple | simple

Also consider G/ submitted by a student where the expr-rules

inG,, are replacgd by the following rules:

expr — expr relop simple | simple

The target language restricts relational operators (relop) to only
two simple terms as arguments, but the first alternative expr-rule
in G/ over-generalizes this and allows an arbitrary number of
simple terms and therefore wrongly accepts the following tests
(among others):

program a begin if @ == 0 == 0 then relax end end
program a begin while a == a >= a do relax end end

Due to the global nature of the notion of poisoned pairs used in
the mutation-based negative test suites construction algorithms
(Raselimo et al.| [2019), above test cases cannot be generated,
hence, the fault in the expr-rules in G/ remains undetected.
These mutation-based algorithms do not find poisoned pairs
around the (substitution) mutation location and invalidates the
following mutation expr — expr relop simple from which the
faultin G/ can be detected.

Definition 6.4 (immediate recursion elimination). Ler G =
(N,T,P,S), p =A — aAwe a reduction item with other alter-
natives for A, Py = {A — Bi}is1, ep(p) > 0, ef(p) > 0, and
faillp) CTS™. If G’ = (N',T,P’,S)isa CFG with N' = NU{B},
B¢ N, and P’ = P\{p}U{A — aBw, B — f;} then G ~g(p 4y G’
is the immediate recursion elimination patch for A.

Example repair. gfixr prevents the over-generalization in the
expr-rule for G’T(’O_ by transforming the rules as follows:

expr — rest relop simple | rest
rest — simple

It generates 86 candidate grammars in 5 minutes in a single
iteration.
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6.5. Push-down List Elements

Another widespread occurrence of over-approximation com-
mon to most student’s implementations is the permissive defini-
tion of list elements. Consider, for example, a faulty implemen-
tation of a function call with the following rules.

name — ...|id (expr_list) |...
expr_list — expr_list , expr | expr | €

The above rules capture all syntactically valid function calls but
allows function call arguments to be preceded by a comma, e.g.,

(, 0) end
(, 0, 0) end

program a begin a ::

a
program a begin a ::= a

It is perhaps worth noting that, although straightforward, the
above counter-examples may not be generated due to some
restrictions (e.g., deletion and insertion of nullable symbols)
by the rule mutation algorithm, depending on how the golden
grammar that describes the target language is formulated. This
shows that these type of faults can be difficult to spot.

Definition[6.5]and Definition [6.6|formulate the left and right
recursive variations, respectively.

Definition 6.5 (push-down list elements). LetG = (N, T, P,S),
p = A — Ayve € P* a reduction item with other alternatives
for A, Py = {A — v,A - wi}i>1, ep(p) > 0, ef(p) > 0, and
fail(p) CTS™. If G’ = (N',T,P',S)isa CFG with N' = NU{B},
Bé¢N,and P =P\ {p}U{A - B,A - w;,B— Byv,B — v}
then G ~s,p.4) G’ is the push-down list elements patch for A.

Definition 6.6 (push-down list elements). LetG = (N, T, P,S),
p =A — afAe € P* a reduction item with other alternatives
for A, Py = {A = a,A = yilis1, ep(p) > 0, ef(p) > 0, and
fail(p) € TS™. If G’ = (N',T,P',S)isa CFG with N = NU{B},
B¢N,and PP =P\ {p}U{A - B,A - y;,B — aBB,B — «a}
then G ~~+g (p.4) G is the push-down list elements patch for A.

The combination of non-terminal splitting and rule deletion
patches can also be used here to achieve the required result.
However, these patches may require extra iterations if there are
multiple occurrences of non-terminal A.

Example repair. gfixr finds the fix for the above over-generalization
in about 4 minutes and generated 106 candidate patches.

expr_list — exprs | &
exprs ~ — exprs , expr | expr
Here, we also use a self-explanatory name for the new non-
terminal that is introduced. The actual patch contains a random-
ized name.

7. Implementation

We have prototyped both passive and active repair variants,
described in the previous section, in a gfixr tool.



System Architecture. gfixr implements the repair loop variations
shown in Algorithms[[|and 2] It uses Python and Maven to
orchestrate the repair (e.g., parameter handling or parser gen-
eration) and Java to implement the grammar analyses (such as
computing the left- and right-functions) and transformations for
the patches. The overall system size is about 5.5kLoC.

gfixr currently only repairs CUP grammars, but the system
can be adapted to work with other parser generators. This re-
quires modifications in the localize (where a modified parser
is required to extract spectral information), transform (where
the grammar meta-model needs to be adapted), and run_tests
(where the build system needs to be adapted) modules.

The localize module currently uses the Ochiai-metric that
worked well enough in our experiments, but this can be re-
configured easily.

The input oracle O used in the active case can be in the
form of a black-parser that can confirm membership. In our
experiments, we use parsers from ANTLR for ground-truth
grammars describing the respective target languages.

Patch Selection. Currently, dfixr uses a simplistic strategy to
select the subset and order of the suspicious items identified
by localize, where repairs are attempted: it simply selects all
items with a non-zero score and processes them in descending
score order. It tries all transformations described in Section 4+
[6] at each repair site to produce candidate patches. The order
in which the applicable patches are tried is implementation-
dependent and mostly fixed; however, users can control which
symbols are used for insertion and substitution patches (see
below for details). Patch selection is therefore integrated into
the transform module.

In the passive repair variant, gfixr evaluates the performance
of each candidate patch over the original input test suite; in
the active repair case, it uses an ever-growing test suite that is
updated after each iteration with the test cases generated from
the iteration’s new candidates. Better performing patches are
pushed towards the front of the priority queue and stand better
chances of further transformations until a fix is found.

Patch Validation. In addition to the specific patch validation
via bigrams, each candidate patch goes through a generic patch
validation to determine whether they improve over their parent,
following the definition of improvements in Section [3} (i) the
candidate reduces the number of failing test cases, or (if) when
the number of failing test cases remains unchanged, the candi-
date must consume at least one longer (and no shorter) prefix
than the parent. gfixr discards candidates that do not improve
over their parent.

The bigram-based validation requires sample bigrams that
can be extracted from the test suite or a different set of sample
tests, using a separate small script.

Configuration. gfixr takes as input the initial grammar, an op-
tional oracle which switches it to the active repair mode, and the
test suite used to specify the repair. The option -bigrams_file
specifies the separately created file containing the bigrams used
for patch validation. -oracle provides the black-box parser that
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implements the ground-truth grammar describing the unknown
target language.

The repair algorithm can be configured through a number of
command line arguments. -tight restricts the symbol substitu-
tions and insertions patches and allows only the most specific
possible symbol in a maximal chain A =* B to be inserted
and substituted. -weak_left and -strong_right change the
relation between good resp. bad tokens and left- resp. right-sets
required to enable a transformation to non-empty intersection
resp. containment (see for example Definition[4.3). Both settings
enable more transformations but may lead to overgeneralization.

We also introduce more control flags. -strict is an option
that prevents greedy transformations like list synthesis from over-
matching and thus over-generalizing beyond the target language.
Some languages can be inherently ambiguous by design and not
parsable using the LALR algorithms; we therefore introduce the
option -non_1r to discard positive test cases generated from a
grammar variant G’, and not in L(G”) because of some conflict
in the grammar.

Further options control CUP’s parsing algorithm. - rr sets
the number of reduce/reduce conflicts that are allowed in the can-
didate; the default is 0. gfixr discards grammars with more con-
flicts. - compact_red enables CUP’s action table compaction,
which often allows it to execute reductions pending on the stack
when a syntax error is encountered. Both options can have an
impact on the localization and should be used only if gfixr cannot
repair the grammar.

8. Evaluation

Our experimental evaluation addresses the following three
research questions:

RQI1. How effective is our proposed passive repair approach in
fixing faults in grammars?

RQ2. How effective is our proposed active repair approach in
fixing faults in grammars?

RQ3. Does the active repair approach induce better fixes than
the passive repair approach?

8.1. Experimental Setup

Evaluation Subjects. In our experiments, we used CUP gram-
mars written by students to evaluate gfixr’s efficacy. These
grammars describe different but structurally similar medium-
size Pascal-style languages used in different graduate compiler
engineering courses. Many of the submissions have lexical is-
sues and could not handle the interactions between parser and
lexer properly. We discarded submissions with known lexical
issues (e.g., wrong regular expressions for strings). The first ten
grammars (#1 to #10, see Table E]) were taken from different
small cohorts; they were randomly selected from all submissions
that failed at least one test. The remainder of the grammars (#11
to #33) are from the most recent cohort, where the class size
was significantly larger, with a total enrolment of 28. In one
assignment, the students were tasked with writing CUP parsers



for two languages G and H. The grammar for the language G
was straightforward, since students were given its description in
a different formalism and only had to adapt it for CUP parsing.
For the second language, however, they were given a textual
description of the language that they had to formalize into a CUP
grammar. We discarded four submissions that contain reduce/re-
duce conflicts, as well as the grammars that produced parsers
that pass all tests. This leaves us with a total of 23 grammars
for both languages that we repair. Note that these grammars are
free of semantic actions; we leave handling of grammars with
semantic predicates for future work.

Test Suites. For each target language we generated two test
suites from the instructor’s golden grammars, following the
approach outlined in Section[2.2] and use the cdrc test suite as
repair specification, and the more diverse one to compute the
bigrams for patch validation. In the active repair case, we also
generate the cdrc test suite from each generated candidate patch
that we then add to the initial test suite, as described in Section

B2

Evaluation Metrics. To determine how well the gfixr-repaired
grammars generalize, and to enable a fair comparison between
the passive and active repair configurations, we adopt the eval-
uation approach used to evaluate the accuracy of the learned
grammars in the Arvada system (Kulkarni et al., 2021). This
relies on validation test suites that are generated from the target
(resp. repaired) grammar to measure recall (resp. precision). Un-
like in Arvada, however, our validation suite includes negative
test cases. We generate larger and more diverse bfs,, deriv, and
random test suites. We also use negative test suites generated
via the rule mutation algorithm as validation tests. We randomly
sample 1000 test cases of which a third are negative tests. The
precision, recall, and F1 scores shown in Tables E] and E] are
average runs over five samples of 1000 tests each.

Recall: We use recall to determine how well each gfixr-repaired
grammar variant generalizes to new, unseen tests. Here,
we generate the validation suite from the oracle grammar,
and we measure in how many of the tests in the validation
suite the repaired variant is consistent with the golden
grammar (i.e., the generated parser reports the expected
result).

Precision: We use precision to determine how closely each gfixr-
repaired grammar variant approximates the repair target.
Here, we generate the validation suite from the repaired
grammar variant. We measure the proportion of tests
sampled from this validation suite where the repaired
variant and the oracle grammar are consistent.

F1 Score: We use the F1 score as combined measure of how
accurate the repaired grammar is. It is the harmonic mean
of precision and recall.

Note that in the cases where the validation test suite con-
tains only positive tests, low recall indicates overfitting (i.e., the
repair target is overly specialized towards the input test suite
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specification) and low precision indicates over-generalization,
i.e., the repaired grammar is too permissive. However, since
our validation tests include negative tests, the terms over-fitting
and over-generalizations are not as intuitive as they are when
using only positive tests. For example, when a repaired grammar
variant accepts a negative test generated from the target gram-
mar, it indicates that the repaired grammar is too permissive and
according to our set up above, we get low recall.

8.2. Passive Repair Results (RQ1)

Table2]summarizes the results of our passive repair approach
for the student grammars. £ is the target language, with 7oy
the running example (see Figure , and A to H the languages
from the different assignments. bugs is the number of faults in
the student grammars revealed by the input test suite 7S 7. This
was determined by manually inspecting the rules identified as
suspicious by a spectrum-based fault localization metric (i.e.,
Ochiai) using 7S, for the localization and confirmed in the
successfully repaired grammar variantE] TS| is the number of
positive tests in the repair test suite, with fails the number of
failing tests. iter is the number of iterations of the repair loop.
We limit the total number of iterations to 150; when this is
reached, the repair algorithm stops the search and returns the best
candidate as partial repair. Partial repair entries are shaded grey
in Tables [2]and 3] cand is the number of candidate grammars
generated by the repair algorithm. time is the overall runtime
of the repair; measured as wall-clock time on an otherwise
idle 2.70 GHz server with 36 cores (i.e., 72 hyper-threads) and
378 GB RAM and given as hours:minutes:seconds. The times
include the compilation of the candidate grammars for CUP
(and their corresponding lexical specifications in JFlex format)
to Java and further to executable code, the execution of this code
over the test suite, the fault localization, the computation of the
grammar predicates for each selected candidate, the application
of the actual repair transformations, and the output of the new
candidates in CUP format. The timings are dominated by the
first of these steps: the compilation of the CUP grammars takes
on average about five seconds.

Efficacy. Table[2]shows overall promising results, and we can
observe a few trends. First, and foremost, gfixr can indeed fix
grammar bugs: our passive repair configuration returns a patch
that is consistent with the repair specification given by the test
suite TS £, in all but four grammars (#2, #10, #25, and #33) where
it failed to find the repairs within 150 iterations. This indicates
that the localization directs the repair to the right locations,
despite the fact that the technique it uses is based on single
fault assumption and some studies have shown that multiple
fault interactions may harm their effectiveness (Abreu et al.|
2009; [ Xue and Namin, 2013). Moreover, it also indicates that
the combined patches are sufficiently expressive. In the failing
cases, however, the localization ranked the faulty location too

3Note that we could not manually find and fix all bugs for some grammars;
this is indicated by the entry >5. In these cases, gfixr was also unable to find a
full fix.



Table 2: Passive repair results for student grammars. Partial repairs are shaded grey.

grammar tests gfixr
#| L IN| | |T| |P| | bugs | |TSg| | fails | iter. cand. time
1| Joy || 36 | 32 68 2 86 12 2 43 | 00:01:29
2| A 46 | 42 | 102 1 179 3| 150 | 10744 | 04:23:53
3| A 49 | 43 | 107 1 179 2 1 94 | 00:02:59
4| B 45 | 42 88 2 79 2 2 55 | 00:01:59
5|¢C 35| 27 60 1 86 1 1 2 | 00:00:30
6| D 45 | 30 78 1 80 14 1 89 | 00:02:15
718 46 | 24 79 4 199 14 20 332 | 00:15:59
8| & 47 | 32 84 4 199 17 11 576 | 00:15:25
91 F 39 | 46 96 21 212 18 5 513 | 00:39:09
10 | & 49 | 72 | 145 | >5 212 58 | 150 | 36924 | 15:19:03
11| G 32 | 49 94 2 194 17 2 398 | 00:10:35
12| G 32 | 49 80 - 194 - - - -
13|¢G 43 | 49 92 2 194 11 3 188 | 00:05:54
14| G 53 | 49 98 9 194 | 181 9 2412 | 01:01:30
156G 31 | 49 75 1 194 5 3 198 | 00:05:44
16 | G 37 | 49 84 1 194 3 1 201 | 00:04:40
17| G 37 | 49 83 1 194 5 1 22 | 00:05:51
18| G 38 | 49 99 4 194 17 7 178 | 00:08:17
19| G 35| 48 87 2 194 10 5 309 | 00:07:39
20 | H 52 1 62| 124 - 205 - - - -
21 | H 42 | 62 | 110 2 | 205 46 4 215 | 00:09:07
22 | ‘H 46 | 62 | 120 4| 205 56 8 3775 | 01:39:11
23 | H 44 | 62 | 106 2 | 205 2 2 38 | 00:01:49
24 | H 54 1 62 | 121 4 | 205 13 4 134 | 00:07:31
25 | H 39| 62| 102 | >5 205 38 | 150 | 11838 | 08:40:34
26 | ‘H 48 | 62 | 121 - 205 - - - -
27 | ‘H 56 | 62| 139 2 | 205 12 2 249 | 00:07:42
28 | ‘H 47 | 59 | 103 1 205 5 1 89 | 00:02:29
29 | H 61 | 62| 116 1 205 44 1 102 | 00:06:28
30 | H 57 | 62| 116 - 205 - - - -
31 | H 49 | 62 | 119 2| 205 25 2 543 | 00:14:17
32 | H 41 | 62 | 110 1 205 1 1 238 | 00:08:54
33 | ‘H 35| 62 98 | >5 205 | 205 | 150 8704 | 08:02:41
low, and the repair kept trying to fix correct rules (see Section[9]  top.

for a more detailed discussion).

Second, the wall-clock repair times are typically below or
around 15 minutes using a moderately powerful server, in par-
ticular if the grammar contains only a few (up to four) faults.
Grammars with multiple faults that require several patches obvi-
ously take longer, but gfixr can still find fixes comprising patches
and in most cases in less than 60 minutes wall-clock timef]
The overall runtime is approximately linear with the number of
candidate grammars.

Third, in about half of the cases, the number of iterations of
the repair loop is the same as the number of bugs, and the number
of candidate grammars remains small. This again indicates that
the fault localization can identify the faults sufficiently well, and
that the priority queue keeps the most promising candidates on

4This is scalable because the candidates can be evaluated in parallel, so this
gives a good indication of a real-world scenario.

Finally, note that our input test suite 7.S; (which satisfies
cdrc coverage) cannot reveal bugs in four grammars (#12, #20,
#26, and #30) but the active repair approach demonstrates that
these grammars indeed contain faults.

Accuracy Evaluation. Table[3|shows the accuracy evaluation of
our passive repair approach. Columns R,, P,, and F'1, contain
recall, precision, and F1 score values for the faulty original input
grammar, respectively. We include these values in order to in-
vestigate whether the repair does indeed produce grammars with
better quality. From these values, we see that grammars with
fewer than five bugs already have moderately high recall scores,
which validates our assumption of the competent programmer
hypothesis. However, low precision scores mean that most the
input grammars over-generalize beyond the target language.
The corresponding recall, precision, and F1 score values for
the repaired grammar variants are shown in columns R, P, and
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Table 3: Summary of results showing accuracy of the passive repair approach and the number of applied patches for each repaired grammar.

accuracy symbol edit listification
#| L bugs R, P, Fi, R, P, Fl, || d tls|t] g )
1| Yoy 2 || 0.902 | 0.649 | 0.755 || 0.997 | 0.637 | 0.777 2
2| A 1| 0972 | 0.769 | 0.859 || 0.975 | 0.751 | 0.848
3| A 1 || 0.972 | 0.910 | 0.940 || 0.999 | 0.985 | 0.992 1
4| 8B 2 || 0.952 | 0.902 | 0.926 || 0.999 | 0.910 | 0.952 1 1
5/¢C 1 || 0969 | 0.999 | 0.984 || 0.977 | 0.930 | 0.953 1
6| D 1 ]| 0.638 | 0.465 | 0.538 || 0.998 | 0.759 | 0.862 || 1
718 4 | 0.818 | 0.733 | 0.773 || 0.987 | 0.704 | 0.822 || 2 | 14 | 3 1
8| & 411 0.579 | 0499 | 0.536 || 0.974 | 0.521 | 0.679 || 3 | 2 |4
9| F 2 || 0939 | 0.792 | 0.859 || 0.996 | 0.560 | 0.717 || 3 2
10 | 7 >5 || 0.697 | 0.466 | 0.559 || 0.909 | 0.391 | 0.547
11| & 2 || 0.743 | 0.595 | 0.661 || 0.956 | 0.913 | 0.934 2
12| G - 1] 0.999 | 0.333 | 0.460 - - -
13| & 2 || 0.821 | 0.333 | 0.474 || 0.999 | 0.589 | 0.741 || 1 2
14| G 9 || 0.366 | 0.333 | 0.349 || 0.991 | 0.806 | 0.889 1 6 2
15| G 1]} 0931 | 0.761 | 0.837 || 0.999 | 0.736 | 0.848 3
16 | G 1| 0971 | 0.574 | 0.700 || 1.000 | 0.875 | 0.933 1
17| G 1 || 0.932 | 0.938 | 0.935 || 1.000 | 0.898 | 0.946 1
18| G 4 1] 0.886 | 0.786 | 0.833 || 0.915 | 0.768 | 0.835 || 1 2
19| &G 2 || 0.936 | 0.529 | 0.675 || 0.963 | 0.485 | 0.645 || 2 1 2
20 | ‘H - 1] 0.994 | 0.553 | 0.711 - - -
21 | ‘H 2 || 0.896 | 0.782 | 0.835 || 0.994 | 0.705 | 0.825 || 1 2|1
22 | H 4 1] 0.860 | 0.827 | 0.843 || 0.952 | 0.672 | 0.788 || 3 1]2 2
23 | H 2 || 0978 | 0.894 | 0.934 || 0.982 | 0.899 | 0.939 || 1 1
24 | ‘H 4 | 0912 | 0.720 | 0.805 || 0.953 | 0.727 | 0.825 || 1 1 2
25 | ‘H >5 || 0.945 | 0.762 | 0.843 || 0.974 | 0.655 | 0.783
26 | ‘H - 1] 0.999 | 0.549 | 0.709 - - -
27 | ‘H 2 || 0.984 | 0.641 | 0.776 || 0.984 | 0.604 | 0.749 || 1 1
28 | ‘H 1] 0962 | 0.718 | 0.822 || 0.980 | 0.717 | 0.828 1
29 | H 1| 0.899 | 0.913 | 0.906 || 0.985 | 0.909 | 0.945 || 1
30 | H - || 0.984 | 0.787 | 0.875 - - -
31 | H 2 || 0.962 | 0.805 | 0.877 || 0.980 | 0.810 | 0.887 1
32| H 1 || 0.990 | 0.828 | 0.902 || 0.993 | 0.832 | 0.905 || 1
3 | H >5 || 0.332 | 0.333 | 0.332 || 0918 | 0.670 | 0.774

F1I,, respectively. We see from the table a significant increase
in recall in most cases; we even achieve 100% recall for two
grammars (#16 and #17). The precision results, however, are
mixed and sometimes the repaired grammar has lower precision.
Overall, this translates to slightly better F1 scores compared to
the input grammars. This shows that even though we achieve
moderate recall improvements with our passive repair approach,
it often produces grammars that over-generalize beyond the
target language. This problem is addressed in the active repair
approach (see Section[8.3).

Applied Patches. The right-most columns of Table[3|give insight
on the interaction of the grammar transformations discussed in
Sections [d] and [5] to induce the fixes described above. Specifi-
cally, it shows for each repair how often each patch type was
applied. Here, d is symbol deletion, i is symbol insertion, s is
symbol substitution, while t is the symbol transposition patches.
£ means right recursion introduction and £, the list synthesis
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patches. Note that we are repairing the input grammar in our
experimental setup against a fixed test suite containing positive
tests only; hence, the language-tightening transformations de-
scribed in Section [6are never used for repairs. Note also that we
do not consider the patch usage count for partial repairs.

Most patch types are used widely, but symbol transposition
is not applied at all. More specifically, symobol deletion is
applied 22 times, symbol insertion 27 times, symbol substitution
25 times, and two listification patches are applied 7 and 17 times
respectively.

RQ1. The passive repair approach is effective in fixing faults
in medium-sized grammars with real faults. It fully repaired
25 out of 33 grammars against a cdrc test suite for the target
grammar as repair specification, and partially repaired four
grammars. The repairs universally improve the recall but re-
duce the precision in about half of the cases, indicating that the
repaired grammars over-generalize beyond the target language.




Table 4: Active repair results for student grammars.

tests gfixr accuracy
#| L bugs TS;,; | fails | iter. cand. time R, P, Fl,
1 | 9oy 3 (86, 218) 18 4 227 | 00:06:49 || 1.000 | 1.000 | 1.000
21 A 71 (179, 182) 36 7 1184 | 00:32:20 1.000 | 0.976 | 0.988
31 A 2 | (179,203) 8 2 224 | 00:06:41 || 0.999 | 1.000 | 0.999
41 8B 4 (79, 82) 7 4 324 | 00:09:50 || 1.000 | 1.000 | 1.000
5|C 1 (86, 104) 1 1 2 | 00:00:30 || 0.977 | 0.935 | 0.956
6| D 3 (80, 116) 98 4 739 | 00:20:12 || 1.000 | 1.000 | 1.000
7168 7 (199, 371 80 15 1605 | 00:48:49 || 0.987 | 1.000 | 0.993
81 & 8 | (199,137) 78 24 6069 | 05:57:27 1.000 | 0.838 | 0.912
91 F 4| (212,173) 25 7 1037 | 01:07:49 || 0.998 | 1.000 | 0.999
10 | & >5 | (212,155) | 149 | 150 | 12972 | 20:01:01 || 0.794 | 0.457 | 0.580
11| G 41 (194, 221) 33 3 1035 | 00:34:26 || 1.000 | 1.000 | 1.000
12| G 31 (194,121) 15 4 245 | 00:06:32 1.000 | 1.000 | 1.000
13| G 51 (194,104) 22 5 323 | 00:11:07 1.000 | 1.000 | 1.000
14| G 9 (194,70) | 249 10 4934 | 02:49:56 || 0.991 | 0.829 | 0.903
15| G 51 (194,209) 25 10 3573 | 03:02:05 || 0.962 | 0.633 | 0.764
16 | G 21 (194,104) 9 2 316 | 00:08:41 1.000 | 1.000 | 1.000
17 | G 2 | (194,104) 11 2 108 | 00:08:01 1.000 | 1.000 | 1.000
18 | G 6 | (194,214) 53 18 4184 | 02:00:55 || 0.914 | 0.802 | 0.854
19 | G >5 | (194, 134) 41 70 3143 | 02:12:14 || 0.832 | 0.373 | 0.515
20 | ‘H 3] (205,233) | 120 4 485 | 00:23:54 || 0.985 | 1.000 | 0.992
21 | ‘H 4 | (205,213) | 134 7 1221 | 01:05:08 || 0.994 | 0.943 | 0.968
22 | H 5| (205, 303) 72 8 3682 | 02:42:17 || 0.961 | 0.839 | 0.961
23 | ‘H 31 (205,272) 3 3 131 | 00:05:03 || 0.982 | 0.987 | 0.984
24 | ‘H 6 | (205,186) | 104 8 1444 | 01:15:06 || 0.953 | 0.999 | 0.975
25 | H >5 | (205,300) | 137 | 150 9196 | 07:59:45 || 0.973 | 0.806 | 0.881
26 | H 1| (205,265) | 119 1 324 | 00:08:56 || 0.999 | 0.952 | 0.975
27 | H 3| (205,306) | 172 4 1033 | 00:58:53 || 0.984 | 0971 | 0.977
28 | ‘H 4| (205,114) 71 7 1126 | 00:53:28 || 0.980 | 0.909 | 0.943
29 | ‘H 1| (205,113) 44 1 102 | 00:06:54 || 0.985 | 0.904 | 0.943
30 | H 3 | (205, 160) 3 3 308 | 00:15:04 || 0.984 | 0.999 | 0.991
31 | H 31 (205,227) 44 3 637 | 00:33:13 || 0.980 | 1.000 | 0.990
32 | H 1| (205,322) 1 1 238 | 00:13:20 || 0.993 | 0.836 | 0.908
33 | H >5 | (205,261) | 466 | 150 | 11586 | 15:28:59 || 0.921 | 0.740 | 0.820

8.3. Active Repair Results (RQ2)

Table [ summarizes the repair results using the active repair
approach described in Section[3.7] Here, TS,,; comprises the
cdrc test suite TS, that is generated from the target language
(that also serves as oracle O), and an initial cdrc test suite TSg
generated from the input grammar G. Note that 7S¢ can contain
negative tests if G over-generalizes L. Table[d]shows the sizes of
|TS | and |TSg|. Columns R,, P, and F'1, show recall, precision,
and F1 scores for the repaired grammar, respectively. Candidates
where only a partial repair is found in 150 iterations are again
shaded in grey.

Note also that the active repair loop can stop with a candidate
that is a full repair with respect to 7S, but still fails some of
the tests generated from some other repair candidates. These

“premature” terminations are shown in a lighter shade of grey.

We could find better repairs by restarting the repair process with
these tests added to T;,;;, but we leave this for future work.

Efficacy. First, Table[dshows that the incorporation of the oracle
allows us to construct tailor-made repair test suites from each
grammar, by adding 7S to TS ;. This leads, for most grammars,
to an increase in the number of bugs revealed by the test suite
TS,y compared to the previous passive case, €.g., our running
example has three bugs exposed here, an increase from just two
in the passive repair experiments. Grammar #2 in particular
exhibits the biggest jump from one bug revealed in the passive
case to seven in the active case. We see also that 7S;,; now
reveals bugs in grammars #12, #20, #26, and #30 that were
marked as non-buggy in the previous experiment.

Second, our approach finds fixes in less than 20 iterations
in most cases. This also shows that the fault localizer remains
effective and identifies faults sufficiently well. However, the
active repair still returns partial repairs for six grammars. Out
of these, grammars #10, #25, and #33 require more than 150
iterations and the repair loop terminates prematurely for the
grammars #15, #18, and #19.



Table 5: Patches applied by the active repair approach for each faulty grammar.

symbol edit list. tightening
#| L bugs b i st & [ L] S| DB C
1| Joy 3 2 1 1
2| A 7 1 1 2 4
3| A 2 1 1 1
4|8 4 2 2
5/¢C 1 1
6| D 3 1 2] 3
7168 7 212 1| 4] 6|1 2
8| & 8 3 17 | 19
91 F 4 1 5 1 2
10 | 7 >5
11| G 4 1 1 1
12 | G 3 31 4
13| G 5 4 1
14| G 9 1 71 3
15| G 5
16 | G 2 1 1 1
17 | G 2 1 1 1
18 | G 6
19 | G >5
20 | H 3 1 2
21 | ‘H 4 1]2 1 1 3
22 | ‘H 5 2 2 1 1
23 | ‘H 3 1 1 1
24 | ‘H 6 4 1| 4
25 | H >5
26 | ‘H 1 1
27 | ‘H 3 2 1 1
28 | ‘H 4 1 5 1
29 | ‘H 1 1
30 | H 3 21 211
31 | H 3 1 1 1
32| H 1 1
33 | H >5

[Total [ 16 [8[17]0] 9] 18[42]62] 3] 10]

Third, repair times are typically below 30 minutes, with
about five grammars where the full repair took more than 60
minutes. This is a significant increase in runtimes compared to
the passive case, but an increase in the number of revealed bugs
trivially means we see an increase in the number of iterations
and generated candidate patches.

Finally, we see that the active repair configuration can direct
the fault localization. For example, for grammar #2 in the passive
case, it took over four hours and 150 iterations to fix one fault
that caused three test failures because the fault localizer could
not identify the correct repair site because of some unexpected
behaviour in CUP’s parsing algorithm. Here, however, the faulty
rule was correctly identified because the oracle rejected all test
cases where it was applied in their derivation.

Accuracy Evaluation. The second part of Table [] gives the
detailed accuracy of the fixes. We see that our active repair
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approach significantly improves recall; we even achieve 100%
recall in ten cases (i.e., in about a third of the cases). The active
repair approach also produces “tight” patches with respect to the
target language. We achieve perfect precision in thirteen cases,
which is about half of the cases where the repair loop returned
a full fix. The repaired grammar variants, on average, improve
the quality of the input grammars by about 1.5X. These variants
approximate the target language sufficiently well, in fact, we
even achieve 100% F1 score in eight cases, which demonstrates
that the subsets of the languages described by one these repaired
grammar variants and their corresponding target grammar are
(approximately) equivalent with respect to the validation suite.
In addition to some limitations (see Section 0] below) that in
some cases prevent the active repair approach from achieving
100% precision, we also observed some sampling biases effects
as described by Rossouw and Fischer| (2021)). In fact, we gener-
ate test suites using the same generic cover algorithm (Fischer



et al.l|2011) used there to describe and evaluate these biases. In
our repair case here, counter-examples are not generated that
would make the right patches to have better fitness than patches
that over-generalize (i.e., make the grammar too permissive) the
language.

Applied Patches. Table[5gives the detailed number of patches
applied for each repaired grammar. The patch types are labeled
as before but we now also include language tightening patches
here: S refers to the non-terminal and token splitting patches,
D to the rule deletion patch, * to the push-down list elements
patches and € to the immediate recursion elimination patch.

Like in the passive case, most of the patch types are used
widely, but symbol transposition remains unused. More specif-
ically, symbol deletion is applied 16 times, symbol insertions
8 times, symbol substitution 17, and two listification patches
are applied 9 and 18 times respectively. We also see that non-
terminal (and token) splitting and rule deletion (used 42 and 62
times, respectively) are the most widely used language tightening
transformations, with rule deletion used in all but 4 grammars.
The last two list tightening patches are applied 3 and 10 times
respectively.

RQ2. The active repair approach is effective in fixing faults
in medium-sized grammars with real faults. It fully repaired
27 out of 33 grammars, and partially repaired six grammars.
The repairs universally improve the recall, precision, and the
F1 scores in about more than half of the grammars.

8.4. Pasive Repair vs Active Repair (RQ3)

In this section, we compare the passive and active repair
approaches “like-for-like” for all 33 grammars. Figure [2]summa-
rizes the results of this comparison through a series of boxplots.
We see that active repair produces repairs with better recall,
and achieves 100% recall in ten grammars, while passive repair
achieves that in only two cases. We also observe the passive
repair approach induces patches that over-generalize beyond
the target language, as its repaired grammars give low precision
values. In the active case, however, incorporating test suite gener-
ation and membership queries into the repair loop prevents some
over-generalization to some degree even when using weaker test
suites like cdrc as repair specifications.

RQ3. The active repair approach produces patches that gener-
alize better than the passive repair approach, but the runtimes
are generally higher.

9. Limitations

In this section, we discuss some limitations that affect the
efficacy of our proposed repair approach. These can, in part,
be attributed to our choice of parsing tools, more generally
the underlying parsing algorithms, and to shortcomings of our
realization of both variants in gfixr.
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9.1. Mislocalization due to Unexpected Behaviour

The first limitation concerns CUP, the parser generator we
use to log grammar spectra for fault localization. More specifi-
cally, we illustrate how, in some cases, CUP returns the wrong
spectra and therefore does not identify the faulty rules. Consider
in particular grammar #2 from Table 2] where startVarIDs- and
variableIDs-rules are defined as follows:

startVarIDs — IDENT variablelDs
variableIDS — o IDENT COMMA variablelDs | ¢

The original intent was to capture a COMMA-separated list of
identifiers (IDENT). The fault location (identified by a manual
inspection) is marked by e. The grammar fails the following
three test cases

EENHEID a BEGIN VER a e, a : WAARHEID EINDE a .

EENHEID a BEGIN
FUNKSIE a(a e, a :
EINDE a .

WAARHEID) : WAARHEID := BEGIN EINDE a

EENHEID a BEGIN VER a e, a, a : WAARHEID EINDE a .

We also use the e-symbol here to mark the error location ob-
served in the inputs.

All items from the startVarIDs-rule, i.e., startVarlDs:1:0,
startVarIDs:1:1 and startVarIDs:1:2 have the same spectral counts,
each with a fail count of 3 and pass count of 26. Our tie resolu-
tion strategy that prefers items with the right-most designated
position over other items from the same rules in a tie, picks the
reduction item startVarIDs:1:2. The item variablelDs:2:0 (i.e.,
the e-production) also has the same counts as the items from
the startVarlDs-rule because the e-production is applied just
before the error location. However, none of the items (which
include the faulty variablelDs:1:0) from the first alternative of
the variableIDs-rule are executed in any of the test cases, i.e.,
the rule is not executed in either failing or passing test cases and
therefore has spectral counts of zero. Hence, it is never selected
for repair.

The above illustration explains why it took gfixr a little over
4 hours, 150 iterations and generated 10744 candidate patches
as shown in Table 2]

9.2. Parsing Restrictions

As we mentioned earlier, applying splitting patches to a rule
A — v; can introduce parsing conflicts. In our experimental eval-
uation, we observed that conflict introduction is indeed prevalent
despite some control measures we put in place to mitigate their
effects. First, we do not attempt to repair input grammars with
reduce/reduce conflicts to prevent parsing instability. Second,
we discard patches that introduce reduce/reduce conflicts into
the grammars (except for two cases in the passive repair ex-
periments where we set the number of allowed reduce/reduce
conflicts to one (i.e., -rr = 1)). Finally, for grammars #20 to
#33, we set the flag -non_1r because the language is inherently
ambiguous by design.

While in most cases, enabling -non_1r worked well, in
some cases LR(1) parsing restrictions did not allow the search to
stop with good quality patches. In particular, consider grammar
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Figure 2: Accuracy evaluation results for passive and active grammar repairs. Higher is better. Recall results on the left plot, precision results in the middle and F1
scores on the right. input shows results for input grammar G, passive for passive repair approach and active for active repair approach.

#8 where the target language has the same expression structure as
our example grammar in Figure[I} The simple- and simple_list-
rules are written as

simple — term simple_list | - term simple_list
simple_list — simple_list addop | simple_list term | &

The oracle rejects test cases derived from these rules, including
the tests

source a begin a ::= 0 - end
source a begin a ::= a a a end

The non-terminal splitting patch correctly transforms the simple_list-

rule to the following seven alternatives

simple_list — simple_list addop term | simple_list term term | term
| simple_list addop addop | simple_list term addop
| addop | €

The expectation was that, in the next iteration, gfixr would apply
rule deletion patches to the second, third, fourth, fifth and sixth
alternatives of simple_list, as they are applied in the generation
of rejected tests and incorrectly accept the two test cases shown
above. Deleting these rules would leave us with the following
correct simple_list rules

simple_list — simple_list addop term | €

However, the LALR parsing algorithm implemented by CUP
is too restrictive and did not allow for this, and gfixr returned a
patch with 0.838 precision.

9.3. Loop Restart

In active repair, the basic idea of a repair loop restart is to
stop the search after some iteration when some specified condi-
tion is met (e.g., time-out expired), collect all the information
learned so far, this includes the candidate C at the front of the
priority queue that awaits further processing, and current set of
failing tests 7Sy from the common test pool 7S. Then (automat-
ically or manually) restart the repair process with the candidate
C or even the input grammar G, with the user-provided input
test suite, and previous failing test cases 7Sy added to the new
common test pool 75".
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While the development of several conditions that warrant
restarting the search are left for future work, the current version
of gfixr prompts the user to manually restart the repair process
when the candidate variant C at the front of the queue is con-
sistent with the oracle O on the initial test suite (recall from
Table [] that this includes a user provided seeds and test suite
generated from the faulty input grammar G), but rejects a test
case w € L(O) that was added to TS in some later iteration.
Patches from grammars #15, #18, and #19 were prompted to
restart the search.

10. Threats to Validity

Our observations are based on experiments conducted using
medium-sized grammars written by students. While the faults
made by students are real and tend to be unpredictable, our
results may not generalize to other grammars, to other ranking
metrics used for localization, or to other parsing environments.

The grammar transformations described in this work are
mostly example-driven; we carefully inspected different faults
and designed corresponding transformations that target these
faults. They may not be sufficient to other target grammars.
However, the different patch types are widely used in most gram-
mars, which gives us some confidence in their generality. Our
implementation also allows for easier integration of more trans-
formations. However, we focus almost exclusively on syntactic
elements; the token creation and splitting transformations only
address specific lexical issues and grammars suffering from other
lexical problems may not be fixable.

Finally, we mitigated against the usual internal validity threats
of human error, human bias and human performance by au-
tomating experiments, carefully testing our implementation and
scripts, and by using well-established tools for item-level spectra
collection and test suite generation.

11. Related Work

11.1. Grammar Transformations

Lammel| (2001a) and [Zaytsev| (2009, |2010) have defined
general grammar transformations and used them for grammar
construction, refactoring, and adaptation (Lidmmel and Zaytsev,



2009a; Zaytsev, 2014), including the extraction and comparison
of several complete grammars from different language spec-
ifications (Lammel and Verhoef] |2001}; Lammel and Zaytsevl,
2009b). Jain et al.|(2004) propose a semi-automatic approach for
building new rules starting from an approximate grammar and a
knowledge base of common grammar constructs. However, this
work relies on a human expert to select from a large number of
expressive grammar transformations. Our approach, in contrast,
is fully automatic.

11.2. Grammar Learning

Grammar learning (also known as grammatical inference)
denotes a process of deriving an adequate grammar for a finitely
presented (e.g., via examples) but typically infinite language.
While there are different techniques applied to the problem of
grammar learning, we discuss search-based methods (in par-
ticular, methods that employ genetic algorithms) and inductive
grammar learning methods.

Genetic Grammar Learning. Genetic algorithms (GA) have
been used to learn CFGs from test suites. The applied genetic
operations include point mutations such as replacement, inser-
tion, or deletion of symbols (Di Penta et al., [2008)) and modifi-
cation of EBNF operators (Crepinsek et al., 2005) in a single
rule, global mutations such as merging and splitting of non-
terminal symbols (Petasis et al.| 2004), mutated rule duplication
(D1 Penta et al., 2008), or different rule generalizations (Petasis
et al.,[2004), and different crossovers where rules from one gram-
mar are spliced into the other. Our transformations are similar to
those mutations, but we give explicit, static conditions for their
viability, and immediately validate them against the sample bi-
grams, which reduces the number of possible applications; note
that sample bigram validation is only useful in repair, where the
parent grammar is already a good approximation of the target
language. We do not use crossovers, because we repair a single
initial grammar and all candidate grammars have been derived
from this, so that crossovers do not add diversity.

The fitness of a grammar is usually evaluated, as in our ap-
proach, by running the corresponding candidate over the test
suite; in practice, results can improve if positive examples get
priority, but negative examples are required to prevent over-
generalization (Crepinsek et al.l |2005). Scoring functions are
typically based on some version of balanced accuracy, some-
times taking the length of the longest recognized fragment into
account (Lankhorst, |{1994). Our priority function follows similar
ideas.

Unlike in our grammar repair task, where generation of
test suites from candidate grammars and use of an oracle O
to answer membership queries on the generated sentences, are
intrinsically incorporated into the repair loop, the GA-based
algorithm by |Crepinsek et al.| (2005) leaves sentence genera-
tion from candidates after the plausible candidate that parses all
positive examples is returned; in order to determine the need
for further introduction of negative examples. The eg-GRIDS
system by |Petasis et al.|(2004)) ignores sentence generation from
candidates completely, but the authors use it as a measure of
quality on the output grammar variant that captures the positive
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input training set. The system also does away with leveraging
negative evidence to avoid some overgeneralization; the mini-
mum description length (MDL) principle is rather employed that
ensures “compact” learned grammars with respect to encoded
training examples.

Di Penta and Taneja| (2005) and D1 Penta et al.|(2008) used
GAs to learn the well-separated extension of a programming
language, starting from the full grammar of the base language.
Their inference approach, however, involves an initial manual
flagging of differences between the source grammar and its di-
alect, then extracts sub-grammars from the source that reflect
those differences because earlier attempts to infer a complete
general-purpose grammar did not yield favourable results. We
showed in our earlier work that our approach can be used to
capture the dialect of a language; we rely on fault localization
to automatically identify deviations between the input grammar
and its dialect, and we do not derive subsets of the input gram-
mar. However, we are aware that we may be addressing slightly
different problems, and it remains an interesting and open ques-
tion to see how our approach can be used to replace the blind
rule selection in genetic grammar learning methods.

Inductive grammar learning. Our work can be seen as gram-
matical inference, which has a long history (e.g., [Solomonoff
(1959)) and has been widely addressed, both in theory and in
practice (see (Leel 1996} |Sakakibara, 1997} |de la Higuera, |[2010;
Stevenson and Cordyl [2014)) for overviews).

Our approach has the full test suite available with access to
a membership oracle. It therefore sits between Gold’s model of
identification in the limit (Gold, |1967), where observations are
presented in sequence (and approaches are often order-sensitive,
e.g., (Knobe and Knobel [1976)) and Angluin’s guery model (Any
gluin, |1987), where the learner can ask the teacher membership
and equivalence queries and use the teacher’s response in guid-
ing the learning process. However, since we are given an initial
grammar, we are solving a simpler problem than learning the full
grammar from scratch. We focus on learning from unstructured
text (fextual presentation) because we cannot use the gram-
mar under repair to construct parse tree skeletons (structural
presentation), from which only the labels need to be learned
(Sakakibara, {1997} |Drewes and Hogberg| [2003)).

Most complete learning algorithms work for regular lan-
guages only, where all necessary properties (e.g., language equiv-
alence) are decidable, but some work carries over to restricted
subclasses of context-free languages (Isberner, [2015). We focus
on heuristic approaches here.

Several systems such as Synapse (Nakamura and Ishiwatal
2000; [Nakamura), 2006) or Gramin (Saha and Narula, 2011) iter-
atively parse the positive tests using the current grammar; when
an attempt fails, they introduce a new rule to match this input.
Synapse uses the negative presentation after each generalization
to prevent overgeneralizations. Gramin adds some heuristics to
reduce the search space.

Glade (Bastani et al.| 2017) implements a two phase generate-
and-test approach comprising a regular expression generalization
(which introduces alternatives and repetitions), followed by a
CFG generalization (which introduces recursions); repetition



and recursion introduction are somewhat similar to Solomonoff’s
approach (Solomonoff] [1959). Glade also generates specific
check words from the generalized locations to reject candidates
(similar to our bigram-based validation), but this relies on a
teacher. Glade has been used to successfully learn useful ap-
proximations of some production grammars and represents the
current state-of-the-art in CFG inference.

Kulkarni et al.|(2021) introduce and evaluate a non-determini-
stic grammar learning tool, Arvada, that takes as input (like
Glade) training examples S and an oracle O that answers mem-
bership queries. From each input example s € S, the tool creates
a flat tree (i.e., a tree with a root node with all characters c;
from s as leaf labels). The main learning loop of Arvada can be
summarized by two heuristic generalization operations; (i) bub-
bling which introduces new non-terminals by assigning a new
parent node (with non-terminals as labels) to a sequence of
sibling nodes; and (ii) merging which subsequently validates
bubbles by checking whether two nodes ¢, and #, can be com-
mutatively substituted, i.e., if replacing ¢, by #, (and vice versa),
does not produce words outside the target language. Arvada’s
experimental evaluation shows that it achieves higher recall (i.e.,
Arvada-mined grammars generalize better to unseen tests) and
better F1 scores than Glade. This result led to one of the few
and rare replication studies published in the history of the PLDI
conference (Bendrissou et al.l [2022). The replication study
disputes some of the claims of the original paper by [Bastani
et al.| (2017) such as “overly optimistic”” F1 scores and raises
scalability concerns about Glade.

AUTOGRAM (Hoschele and Zeller, 2016, 2017) uses dy-
namic tainting to produce a CFG for the input language but this
again requires grey-box access to the SUT. In parser-directed
fuzzing (Mathis et al.| 2019), the parser itself is used to guide
the sentence generation. Mimid (Gopinath et al., 2020) extends
this to extract an explicit CFG.

11.3. Grammar-based Test suite Construction

Since we repair a CFG against a finite test suite, we need
to ensure that this covers the syntactic structure of the target
language £ well. In some application scenarios (e.g., educa-
tion, grammar migration, or language modification) we can take
advantage of a grammar for £ that may be available but not
accessible to the developers (i.e., students) or sufficient (e.g., in
the wrong formalism), and automatically generate a test suite.

Several algorithms yield sufficiently detailed test suites that
strike the right balance between syntactic regularity and vari-
ation, e.g., cdrc (Lammel, 2001b), k-path coverage Havrikov
and Zeller| (2019)), derivable pair coverage (van Heerden et al.,
2020)), or automata-based methods (Zelenov and Zelenova, [2005},
Rossouw and Fischer, [2020).

Grammar-based fuzzers (e.g., LangFuzz (Holler et al.,[2012)
and IFuzzer (Veggalam et al.| [2016))) mostly use random sen-
tence generation techniques, and often exploit a given corpus to
extract seed code fragments (Holler et al.l 2012} Veggalam et al.,
2016; ' Wang et al.L [2017). Nautilus (Aschermann et al., [2019)
exploits grey-box access to the SUT to provide feedback to the
sentence generation. These systems all assume that a correct
grammar is available.
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11.4. Automatic Program Repair

Automatic program repair (APR) techniques, also called au-
tomatic patch generation or automatic bug fixing, take as input a
faulty program and a set of test cases which include at least one
fault-revealing test case, exploit fault localization to identify po-
tential repair sites, apply modifications either directly at source
code or binary level to these sites and give an output of a re-
paired variant of the program that is consistent with the input test
cases or meets some specifications or output none if the repair
cannot be found. APR comes in different flavours, e.g., generate-
and-validate, semantics- and data-driven techniques. Studies by
Monperrus| (2018)), (Gazzola et al.} |2019), and |Ghanbari et al.
(2019) give a comprehensive view of the field.

Like our repair task, many approaches are based on gener-
ating candidate patches using different search strategies such
as genetic programming (Arcuri} 2009} |Arcuri and Yaol 2008}
Arcuri, 2011} [Forrest et al., 2009; |[Weimer et al., 2009, |2010;
Le Goues et al.| [2012)), random search (Q1 et al., {2014, 2013} J1
et al.| 2016)), or bug templates (Martinez and Monperrus}, |2018}
Liu et al., 2019b; Saha et al.,[2017} [Liu and Zhong] 2018} Liu
et al.;,2019a; Koyuncu et al.} 2020; Kim et al.,2013; Hua et al.}
2018) and validating each candidate patch over a test suite. Fault
localization plays a key role in such generate-and-validate ap-
proaches, because identifying potentially faulty code fragments
reduces the amount of possible repair sites that need to be val-
idated. GenProg (Le Goues et al., [2012) uses a simple fault
localization technique where statements that are executed by
failing (resp. passing) tests only are assigned a score of one
(resp. zero), and statement executed by both failing and passing
tests a fractional value. gfixr uses the Ochiai (Ochiai, [1957)
metric (see Section @, another common technique, but can be
easily extended to work with other metrics.

In semantics-driven approaches (Ke et al., [2015; Nguyen!
et al., 2013 |Roychoudhuryl, 2016} [Le et al., 2017) the faulty
code fragments (which are identified using spectrum-based fault
localization approaches) are executed symbolically while the
non-faulty fragments are executed using concrete values using
symbolic execution. This family of APR techniques share the
use of spectrum-based fault localization with our work, but
because grammars do not have an equivalent executable semantic
model, their underlying ideas are not obviously transferrable.

In principle, we could use program repair tools directly on
the parser’s implementation of the grammar. However, our
approach presents several advantages. Fixing the parser code
directly is impossible for table-driven implementations, and
induces much larger fix spaces for recursive descent parsers, due
to the lower level of abstraction. Moreover, it does not help
in applications where the grammar itself must be fixed, e.g.,
grammar-based fuzzing.

12. Conclusions and Future Work

We described the first approach to fix faults in context-free
grammars automatically. Our approach alternates over three key
steps and gradually improves the grammars until all tests used as
repair specification all pass: (i) We use a fine-grained spectrum-
based fault localization method to identify suspicious items



(i.e., specific positions within rules) as potential repair sites.
(if) We use small-scale transformations to patch the grammar
and formulate with each transformation explicit pre- and post-
conditions that are necessary for it to improve the grammar.
(iii) We validate each candidate grammar over the same test suite
to determine if it improves over the parent grammar. Candidates
that do not improve over the parent are discarded. We further
use a priority queue to keep improving the most promising
candidates.

We described two variations of our repair approach: (i) In
the passive repair variant, we repair against a fixed test suite
specification. (ii) In the active repair variant, we exploit a mem-
bership oracle and introduce a test suite enrichment where we
generate new tests from each candidate grammar, and use the
oracle to confirm the expected outcome of these tests.

We implemented these ideas in the gfixr system, and suc-
cessfully used it to fix CUP grammars that students submitted
as homeworks in a compiler engineering course. Both repair
variants are effective in fixing real and multiple faults in gram-
mars. A comparison of both variations showed that the active
repair approach works better than passive repair. We got better
F1 scores and achieved many perfect fixes with the active repair
than the passive repair approach.

Future Work. We plan to extend gfixr to repair grammars for
LL-parsers such as JavaCC or ANTLR, and possibly even for
generalized GLR or GLL parsers, and to run more experiments
to evaluate the effect of different test suites, but we see several
directions beyond that to improve our work.

Partial repairs using insertion or substitution patches can
introduce multiple mutated copies of the same base rule. We
plan to clean up the fixed grammar using grammar refactorings
(e.g., introducing new non-terminals for alternatives or common
sub-sequences) (Limmel, [2001a} [Zaytsev, 2009).

Many bugs (especially by students) emerge at the interface
between lexer and parser, due to interactions between the lexer’s
first and longest match policies. Fixing such bugs is easy in
principle (e.g., a new keyword can be introduced through a
substitution patch), but the automation is more complex because
lexer and parser need to be updated synchronously. We plan
to extend gfixr accordingly, or alternatively, use a scannerless
parsing approach (Economopoulos et al., 2009).

Finally, we plan to use the repair in teaching; in particular,
we plan to integrate gfixr into or gtutr feedback system (Barraball
et al., 2020) to help students to improve their grammars when
they are stuck.

Acknowledgements

The financial assistance of the National Research Founda-
tion (NRF) under Grant 113364 towards this research is hereby
acknowledged.

Appendix A. cdrc Test Suite TS,

The test suite 7S5, we use in the running example to illus-
trate different types of grammar transformations.

10 program a

1
1
1
1
1
1
1
1
1
2
2
2
2
2
2!
2
2
2
2
3
3
3]
3
3
3]
3
3

38 program a
39 program a
40 program a

4

42program a
43 program a
44 program a
45program a
46 program a
47 program a
48 program a
49 program a

&
5

52program a

5
5

55program a

5
5

58 program a
59 program a
60 program a

6

62 program a
63 program a
64 program a
65program a
66 program a
67 program a
68 program a
69 program a
70 program a
71 program a
72program a
73 program a
74 program a
75 program a

boolean
boolean
boolean
boolean
boolean
a() end
a(0) end
a(o, @) end

a(e, 0, 0) end

a := array 0 end
a =0 end
alo] =0
if 0 then
if 0 then
if 0 then
if @ then
if 0 then

1program a
2program a
3program a
4program a
S5program a
6program a
7program a
8 program a
9program a

begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin
begin

array a; relax end

, a, a; relax end

, a; relax end

; boolean a; relax end

a
a
a
a; relax end

1program a
2program a
3program a
4 program a
5program a
6program a
7program a
8 program a
9program a
0 program a
1program a
2 program a
3 program a
4 program a
5 program a
6 program a
7 program a
8 program a
9 program a
0 program a
1program a
2 program a
3 program a
4 program a
5 program a
6 program a
7 program a

end

leave end end

relax else leave end end

relax else relax end end

relax elsif @ then leave end end

relax elsif 0 then relax elsif @ then relax end end
if 0 then relax elsif @ then relax end end

if @ then relax end end

integer a; relax end

leave; a() end

leave; if 0 then relax end end

leave; leave; leave end

leave; leave end

leave; read a end

leave; while 0 do relax end end

leave; write "" end

leave end

read a[@] end

begin read a end

begin relax end

begin while @ do leave end end

begin while @ do relax end end

begin write(0) end

begin write - 0 end

begin write false end

begin write a() end

begin write a[0] end

begin write a end

begin write not(0) end

begin write not false end

begin write not a end

begin write not not @ end

begin write not 0 end

begin write not true end

begin write 0 # 0 end

begin write 0 end

begin write (0) end

begin write false end

begin write a end

begin write not @ end

begin write 0 * 0 end

begin write 0 end

begin write true end

begin write 0 + 0 + 0 end

begin write 0 + 0 end
begin write @ - 0 end
begin write @ / 0 end
begin write 0 < 0 end
begin write @ <= 0 end
begin write @ = 0 end
begin write 0 > 0 end
begin write 6 >= 0 end
begin write 0 and @ end
begin write @ end
begin write © or 0 end
begin write "" . 0 end
begin write "" e
begin write " "" end

begin write "" end

begin write true end

define a(boolean array a) begin relax end begin relax end
define a(boolean a) -> boolean a begin relax end begin relax end
define a(boolean a) -> integer a begin relax end begin relax end
define a(boolean a) begin relax end begin relax end

cooocoo=Il

1program a

0 program a
1program a

3 program a
4 program a

XK K K X K K o

6 program a
7 program a

]
]
]
]
]
]
]
]
]
]
]
]
]
]
1 program a ]
]
]
]
]
]

" end

76 program a define a(boolean a) begin relax end define a(boolean a) begin relax end begin relax end
77program a define a(boolean a, boolean a) begin relax end begin relax end

78 program a define a(boolean a, boolean a, boolean a) begin relax end begin relax end

79 program a define a(integer a) begin relax end begin relax end
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