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Abstract
Grammar-based test case generation has focused almost
exclusively on generating syntactically correct programs
(i.e., positive tests) from a context-free reference grammar
but a positive test suite cannot detect when the unit under
test accepts words outside the language (i.e., false positives).
Here, we investigate the converse problem and describe two
mutation-based approaches for generating programs with
guaranteed syntax errors (i.e., negative tests). Word mutation
systematically modifies positive tests by deleting, inserting,
substituting, and transposing tokens in such a way that at
least one impossible token pair emerges. Rule mutation ap-
plies such operations to the symbols of the right-hand sides
of productions in such a way that each derivation that uses
the mutated rule yields a word outside the language.

CCSConcepts • Software and its engineering→Parsers;
Syntax; Software testing and debugging.

Keywords Mutation testing.
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1 Introduction
Following Purdom’s seminal paper [11], many different ap-
proaches and algorithms for grammar-based test case gener-
ation have been investigated, ranging from systematic sen-
tence generation to satisfy various coverage criteria [7, 13] to
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controlled random sentence generation [8]. However, except
for the work by Zelenov and Zelenova [13], existing work
focuses on generating syntactically correct programs from a
context-free reference grammarGref , i.e., positive test cases.
This is not sufficient because a positive test suite cannot
detect when the unit under test (UUT) Utest accepts words
outside the language, i.e., it cannot detect false positives.
This can easily happen, even if the grammar Gtest that

is implemented byUtest is “almost correct”, i.e., structurally
very similar toGref . Consider for example the grammarGtoy

prog → module prio id = block .
prio → [ num ]
block → begin (decl ;)∗ (stmt ;)∗ end
decl → var id : type
type → bool | int
stmt → if expr then stmt (else stmt)? |

while expr do stmt | id = expr | block
expr → expr = expr | expr + expr | ( expr ) | id | num

and assume thatUtest implements the rule
prog → module ([ expr ])? id = block .

instead. Since any positive test generated from Gtoy starts
with “ module [ num ] id”, Utest never executes the branch
where the optional priority specification is not present, and
the error remains undetected. Moreover, since num matches
expr , the use of the wrong symbol remains undetected as
well. Similarly, a wrong implementation of the block-rule

block → begin ((decl ;) | (stmt ;))∗ end
remains also undetected: this allows declarations and state-
ments to be mixed arbitrarily, but positive tests derived from
Gtoy will never have a declaration directly after a statement.

Here we therefore address the problem of generating pro-
grams with guaranteed syntax errors, i.e., negative test cases.
This problem is far from trivial: Gtoy contains already 22
tokens and the shortest word in L(Gtoy) has a length of 9, so
that we need to enumerate 54875873536 test cases to find out
that the UUT does for example not expect the final full stop.
This renders impractical approaches that systematically enu-
merate or randomly generate token strings and use an Earley
[3] or similar parser derived from the reference grammar as
oracle to identify the negative test cases.

In our opinion, negative test suites should have a number
of properties. (i) In order to provide more assurance, test
suites should systematically cover the fault space, up to some
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criterion. (ii) In order to reduce the testing efforts, test suites
should be irredundant (i.e., not contain tests that can be re-
moved without loosing coverage) and interreduced (i.e., not
contain tests that can be replaced by a shorter test without
loosing coverage). (iii) In order to simplify bug fixing, indi-
vidual tests should contain a single, well-defined fault that
can be related easily to the reference grammar.
We propose two systematic, mutation-based approaches

to generate test suites with these properties. In Section 2,
we describe a word mutation approach that modifies each
word in a given positive test suite, by deleting, inserting,
substituting, and transposing tokens. The core insight to
make this approach work is that a word αabβ cannot be in
the language if b is not in the follow set of a. In Section 3, we
transfer the ideas from word mutation to rule mutation, and
systematically modify the rules of the grammar so that every
derivation that uses such a modified rule yields a word that
is not in the language. We apply similar mutation operators
to the symbols of the rules, under conditions that ensure
that the yields from the (unchanged) contexts of a mutated
location and from the mutated symbol itself always contain
an impossible token pair. We implemented both approaches
and give some initial experimental results in Section 4.

Basic notation. A grammar is a four-tuple G = (N ,T , P , S)
with N ∩T = ∅, P ⊂ N × (N ∪T )∗, and S ∈ N . We follow the
use of meta-variables by Aho et al. [1, Section 4.2.2], and use
A → α • β to denote an item, with its designated position
indicated by •, and use P• for the set of all items of G.

We use the established concepts such as derivation, yield,
or nullable in their usual meaning. We extend the definitions
of first and last so that map to sets of symbols rather than
terminals. The precede set (resp. follow set) of a symbol X are
defined as precede(X ) = {Y | S ⇒∗ αYXβ} and follow(X ) =

{Y | S ⇒∗ αXYβ}. We call (X ,Y ) a poisoned pair iff X
and Y cannot occur next to each other in any derivation
from the start symbol or, equivalently, iff X < precede(Y ),
or iff Y < follow(X ), and use PP(G) to denote the set of all
poisoned pairs of a grammarG . Note that any token sequence
that contains a poisoned pair must be an invalid word.

Test suites. A test suite is a set of individual test cases; each
test case consists of the test input data ®x and the expected
output y. The UUTu is executed over ®x and its outputu(®x) is
compared against the expected output, resulting in either a
pass or a fail verdict. In our context, the test input is a string
x of terminals and the expected output is either accept (if
x ∈ L(G)) or reject (if x < L(G)). TS+ ⊂ L(G) is called a
positive test suite and TS− ⊂ L(G) a negative test suite.

Related work. Harm and Lämmel [5] first proposed to use
mutation to create negative test cases, but gave no algorithm.
Offutt et al. [10] mutated the grammar rules, but gave no
conditions to show that the generated test cases are indeed
syntactically invalid. Köroglu and Wotawa [6] followed a

similar approach but used a CYK-parser derived from a sec-
ond grammar as oracle. Zelenov and Zelenova [13] gave
negative coverage criteria for LL and LR parsers. Their NLL
algorithm mutates words in a way that is guaranteed to re-
sult in failing test cases, but unlike the work proposed here,
it does not mutate the grammar rules themselves (so it does
not allow non-terminal mutations), and it does not support
symbol deletions. They also gave an algorithm that derives
negative test cases by covering paths in the LR automaton.
However, we were unable to re-implement this algorithms
from their description, and can thus not compare in detail.

2 Word Mutation
The basic idea of negative test suite generation by word
mutation is to systematically modify wordsw ∈ L(G) into
wordsw ′ < L(G). This idea can be implemented by applying
a family M of mutation operators to each test in a given
positive test suite TS+, i.e., TS− = {m(w) | m ∈ M,w ∈ TS+}.
The two basic insights of our approach to word muta-

tion are (i) that the basic string editing operations insertion,
deletion, substitution, and transposition (which are also used
to compute the Damerau-Levenshtein string edit distance
[2, 9]) are a suitable family of mutation operators, and (ii)
that we can guarantee that the mutants are negative test
cases by ensuring that the mutation produces a poisoned
pair.

Proposition 1 (Damerau-Levenshtein mutations). Let G be
a grammar. Then:

1. (token deletion) If uabcv ∈ L(G) and (a, c) ∈ PP(G),
then uacv < L(G).

2. (token insertion) If uacv ∈ L(G), b ∈ T , and either
(a,b) ∈ PP(G) or (b, c) ∈ PP(G), then uabcv < L(G).

3. (token substitution) If uabcv ∈ L(G), d ∈ T , and either
(a,d) ∈ PP(G) or (d, c) ∈ PP(G), then uadcv < L(G).

4. (token transposition) If uabcdv ∈ L(G), and either
(a, c) ∈ PP(G) or (c,b) ∈ PP(G) or (b,d) ∈ PP(G), then
uacbdv < L(G).

For any positive test suite TS+ we denote by DL(TS+) the
negative test suite that results from applying to all words
from TS+ all token mutations at all positions that satisfy the
conditions of Proposition 1; we also call this set theDamerau-
Levenshtein mutants of TS+. We can construct TS−DL(TS+) with
a simple token-stream fuzzing algorithm: we iterate token-
by-token over each word in TS+ and check whether the con-
ditions of Proposition 1 are satisfied at the current position;
if so, we output the corresponding mutant.
Consider for example the following grammar Garith for

arithmetic expressions:

E → E *E | E /E | E +E | E -E | (E ) | - ? num | id

Note that the minus sign is not part of the num token but a
unary operator that is only applicable to num’s; consequently,
x * - 1 is a valid word, but x * + 1 or x * - y are not.
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We have follow( ( ) = {( , - , num, id} (with the same for
* , / , + , and - ), and follow( ) ) = { * , / , + , - , ) } (with
the same for num and id). Now consider the valid word
x * 1 ∈ TS+. Since + < follow( * ) (and hence ( + , * ) ∈

PP(Garith)), we know that inserting a + after the * produces
a syntax error. Similarly, since (id, num) ∈ PP(Garith), we
know that deleting the * produces a syntax error as well.

The conditions stated in Proposition 1 are sufficient for a
syntax error, but not necessary. The main limitation comes
from the fact that the conditions only check the local context,
and do not take the derivation into account. For example,
since an id can follow a - , the positive test x * - 1 is not
mutated into x * - y < L(Garith). Similarly, (x) is mutated
into (x)( (because ( < follow())), but not into (x)).

3 Rule Mutation
The basic idea of negative test suite generation by rule muta-
tion is to systematically modify the rules of the grammar so
that every derivation that uses such a modified rule yields a
wordw ′ < L(G). We can adapt our word mutation approach
to the rule context, i.e., (i) we can apply string edit operations
to the rules, and (ii) we must ensure that any sentence de-
rived via a mutated rule produces a poisoned pair. Hence, we
need to ensure that the yields from the (unchanged) contexts
of a mutated location and from the mutated symbol itself
always contain a poisoned pair. Note that we cannot delete
or insert any nullable symbol B to mutate a rule p = A → γ
into p ′ = A → γ ′ because we would get a word w ∈ L(G)
derivable via p that is also derivable via p ′.
We first define two functions that compute the left (resp.

right) set of an item. These sets comprise the symbols that
can occur immediately to the left (resp. right) of the desig-
nated position (where the mutation operator will be applied).
Hence, the left set of an item A → α • β contains all tokens
that can occur at the end of α and, if α is nullable, all tokens
that in other contexts can occur left of A.

Definition 2 (left set, right set). The functions left, right :
P• → P(T ) are defined by

left(A → α•β) =

{
(last(α) ∪ precede(A)) ∩T if α nullable
(last(α) ∩T otherwise

and

right(A → α•β) =

{
(first(β) ∪ follow(A)) ∩T if β nullable
(first(β)) ∩T otherwise

We can then formulate conditions under which we allow
a symbol mutation. The idea here is to check for “boundary
incursions” over the designated position of the modified item,
i.e., to check whether any token that can follow (precede)
the left (right) set of the modified item is also in its right
(left) set. If that is not the case, then any yield must contain a
poisoned pair straddling the designated position, and hence
cannot be part of a word in the language.

Definition 3 (symbol deletion mutation). Let p=A → α •

Xβ be an item in P•. If either

follow(left(A → α • β)) ∩ right(A → α • β) = ∅

or
left(A → α • β) ∩ precede(right(A → α • β)) = ∅

then the deletion of X from p at the designated position yields
the mutated production p ′ = A → αβ .

Definition 4 (symbol insertion mutation). Let p = A →

α • β be an item in P•, and X ∈ V be a symbol. If either

follow(left(A → α • Xβ)) ∩ right(A → α • Xβ) = ∅

or
left(A → α • Xβ)) ∩ precede(right(A → α • Xβ) = ∅

then the insertion of X into p at the designated position yields
the mutated production p ′ = A → αXβ .

If X is nullable, then both conditions of Definitions 3 and
4 are false by construction. Hence, we never delete or insert
a nullable symbol.

Definition 5 (symbol substitution mutation). Let p = A →

α • Xβ be an item in P•, and Y ∈ V . If either

follow(left(A → α • Yβ)) ∩ right(A → α • Yβ) = ∅

or
left(A → α • Yβ) ∩ precede(right(A → α • Yβ)) = ∅

then the substitution of X by Y in p at the designated position
yields the mutated production p ′ = A → αYβ .

We can easily extend the rule mutations by a symbol trans-
position; we simply need to translate the conditions of Propo-
sition 1 into left/right and precede/follow terms.
We use the notation p { p ′ to denote that a production

p ′ has been constructed from p by mutation with any of
the mutation operations above. We then get the following
correctness theorem, stated here without proof due to space
restrictions.

Proposition 6 (Correctness of rule mutation). Let G be a
grammar, A → γ ∈ P , S ⇒∗ αAβ , and A → γ { A → γ ′.
Then for allw ∈ T ∗ such that αγ ′β ⇒∗ w , we havew < L(G).

4 Implementation and Evaluation
4.1 Implementation
We have implemented both approaches in approx. 3000 lines
of Prolog code. Our implementation first reads in an EBNF
grammar, eliminates the EBNF operators, and computes the
standard grammar predicates over the resulting plain BNF
grammar. Word mutation is implemented as a straightfor-
ward Prolog-version of the token-stream fuzzing algorithm
sketched in Section 2. We use a generic coverage algorithm
that follows the approach of Fischer et al. [4] as basis for rule
mutation. The algorithm constructs a minimal embedding
for each coverage target, i.e., the instantiation of the coverage
criterion for a given symbol. We simply need to modify the
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Table 1. Characteristics of test suites for benchmark and application grammars
Grammar |N | |T | |P | DL(sym) DL(rule) DL(cdrc) DL(pll) totalDL rule-mut total overlap
Garith 8 10 15 <0.1 236 (8) <0.1 236 (8) <0.1 11260 (190) 0.1 749 (20) <0.1 11410 174 <0.1 11416 96.6%
Gtoy 17 24 28 0.2 6729 (11) 0.1 7276 (12) 0.1 95232 (126) 0.9 9952 (16) 0.1 95232 2447 0.5 95975 69.6%
alan-14 49 48 93 0.6 28640 (39) 0.2 33771 (45) 0.2 164398 (186) 1.5 42119 (58) 0.3 171518 10211 3.8 173859 77.1%
alan-16 50 48 95 0.7 29442 (40) 0.2 34534 (46) 0.2 145426 (169) 1.0 47753 (65) 0.3 153757 9531 3.6 155652 80.1%
simpl-13 46 47 88 0.6 27017 (38) 0.1 31218 (43) 0.2 139331 (166) 1.0 36135 (50) 0.2 143049 8984 3.3 144959 78.7%
simpl-15 49 48 94 0.6 30393 (41) 0.2 35008 (46) 0.2 145547 (168) 1.3 44166 (58) 0.3 150598 10139 3.6 152769 78.6%
dot 30 17 50 0.2 2162 (14) <0.1 3073 (19) <0.1 6071 (33) <0.1 4232 (26) <0.1 7202 771 0.5 7360 79.5%
email 44 97 192 0.9 7857 (101) 0.1 15039 (149) 0.2 225697 (1145) 4.9 56987 (602) 1.0 260276 653 226.0 260449 73.5%
Modula-2 243 85 384 28.3 200669 (111) 2.7 244376 (132) 3.7 742292 (375) 12.4 537601 (263) 10.4 1024798 67503 187.2 1058950 64.2%

coverage target for rule coverage: instead of covering the
rules, we cover all rule mutations.

Our implementation can also produce a detailed explana-
tion of the syntax error, or more precisely, its cause. This is
based on the applied operation and position of the mutation,
and can be used to construct detailed oracles.

4.2 Benchmark and Application Grammars
Table 1 summarizes the characteristics of the test suites gen-
erated for a variety of benchmark and application grammars.
For each grammar, we give the size of the terminal, non-
terminal, and rule set, respectively. We derive the mutants
from four different positive test suites that respectively sat-
isfy symbol, rule [11], and a variant of context-dependent
rule coverage (CDRC) [7], as well as positive LL coverage
(PLL) [13]. We give the number of DL mutants derived for
each of the positive test suites (whose sizes are given in
brackets). totalDL denotes the total number of unique DL
mutants derived from all four positive test suites. rule-mut
gives the results for rule mutation. The final two columns
give the total number of unique negative test cases (i.e., both
word and rule mutants), and the fraction of rule mutants that
are also produced by word mutation (denoted as overlap).
All times are given in seconds and were measured on a

standard laptop with a 2.6Ghz Intel i7-6600 dual core CPU
and 8GB memory, running under Windows 10.
Running examples. Garith is very simple, so the generated
test suites are unsurprisingly small and most rule mutations
can also be produced by word mutations, except for the inser-
tion and replacement of non-terminal symbols that produce
longer token sequences. For example, we get the test x(y)z
from the replacement of the * in the first alternative by the
non-terminal representing the fifth alternative in the BNF
version of the grammar. ForGtoy , rule mutation creates tests
that uncover the first two errors discussed in the introduc-
tion, but not the last one, due to role of the semicolon as
terminator for both declarations and statements.
Coursework grammars. The next block contains the results
for four simple, Pascal-like languages that have been used in
a second-year systems programming course. The languages
are more complex than our running example Gtoy and the
number of generated test cases is uniformly larger.

We evaluated the instructor-implemented parsers against
the generated negative test suites. They uncovered a similar
error in all four parsers: they all accept further tokens after
the closing end of the start rule. We also used a similarly
complex different language in a compiler engineering course;
here, the negative test suites uncovered false positives in
all 13 student submissions, all relating to some deliberately
unclear formulations in the textual language description.
Dot. dot is the grammar for the input language of the dot
graph drawing tool. Running the tool over the generated
tests uncovered a transcription error in our first version,
where we forgot to make the terminal id optional in the
start rule graph → strict ? graph id ? { stmt_list }
Email addresses. email is a grammar for email addresses
that is derived from RFC 5322. It specifies the addr-spec part
of the RFC (e.g., gray@uab.edu), not the address part, which
can contain a display name and the addr-spec in angle brack-
ets (e.g., "Jeff Gray" <gray@uab.edu>). It does, however,
allow comments as part of either the local part or the domain
part (e.g., gray(Jeff)@uab.edu).
The grammar specifies the addresses at the (ASCII) char-

acter level, which explains the large number of terminals
and rules. This in turn leads to large positive test suites
(in particular for CDRC), and consequently also to a very
large number of word mutants. We evaluated three email
validators over the generated test suites and found both false
positives and false negatives in all systems.
Modula-2. The last example uses the ISO-standard grammar
for Modula-2 from modula2.org/tutor. It shows that our
approach also scales to production grammars.

5 Conclusions
We introduced two simple and intuitive mutation-based al-
gorithms that systematically generate negative test cases for
a given context-free grammar. The tests are compact and
have a single, well defined error that can be used for precise
oracles. Initial experiments have shown that they uncover
grammar faults that positive tests fail to uncover. We see
several possible uses for this work, both in grammar engi-
neering (e.g., grammar comparison [4] or fault localization
[12]) and in other applications (e.g., automatic grading of
student grammars or feedback-directed whitebox fuzzing).
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