
Spectrum-Based Fault Localization
for Context-Free Grammars

Moeketsi Raselimo
University of Stellenbosch
Stellenbosch, South Africa

22374604@sun.ac.za

Bernd Fischer
University of Stellenbosch
Stellenbosch, South Africa
bfischer@cs.sun.ac.za

Abstract
We describe and evaluate the first spectrum-based fault local-
ization method aimed at finding faulty rules in a context-free
grammar. It takes as input a test suite and a modified parser
for the grammar that can collect grammar spectra, i.e., the
sets of rules used in attempts to parse the individual test
cases, and returns as output a ranked list of suspicious rules.
We show how grammar spectra can be collected for both
LL and LR parsers, and how the ANTLR and CUP parser
generators can be modified and used to automate the collec-
tion of the grammar spectra. We evaluate our method over
grammars with seeded faults as well as real world grammars
and student grammars submitted in compiler engineering
courses that contain real faults. The results show that our
method ranks the seeded faults within the top five rules in
more than half of the cases and can pinpoint them in 10%–
40% of the cases. On average, it ranks the faults at around
25% of all rules, and better than 15% for a very large test
suite. It also allowed us to identify deviations and faults in
the real world and student grammars.

CCSConcepts • Software and its engineering→Parsers;
Syntax; Software testing and debugging; • Theory of com-
putation→ Grammars and context-free languages.

Keywords Spectrum-based fault localization.

ACM Reference Format:
Moeketsi Raselimo and Bernd Fischer. 2019. Spectrum-Based Fault
Localization for Context-Free Grammars. In Proceedings of the 12th
ACM SIGPLAN International Conference on Software Language En-
gineering (SLE ’19), October 20–22, 2019, Athens, Greece. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3357766.3359538

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’19, October 20–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6981-7/19/10. . . $15.00
https://doi.org/10.1145/3357766.3359538

1 Introduction
Grammars are software, and can contain bugs like any other
software. Testing can be used to demonstrate the presence
of bugs in grammars (or any other software), but does not
directly give any further information about their location.
Software fault localization techniques [13, 53] build on test-
ing and try to automatically identify likely bug locations.
Spectrum-based fault localization (SFL) methods [3, 23, 36,
43, 52] execute the unit under test (UUT) over a given test
suite and record a program spectrum, a representation of
the execution information for the UUT’s individual program
elements; most SFL methods use binary statement coverage,
i.e., record whether a statement has been executed or not.
From the spectrum they then compute a suspiciousness score
for each program element; the methods differ in the details
of the score computation but elements with a higher score
are seen as more likely to contain a bug.

Hence, we describe and evaluate the first method to local-
ize faulty rules in a context-free grammar. We view a rule to
be possibly faulty if it is applied in a derivation of a word that
is accepted by a parser for the grammar but is outside the
“true” language (which may have a different grammar), or
vice versa, if it is applied in a partial derivation of a word that
is rejected by the parser but that is within the true language.
This view lends itself readily to a spectrum-based fault lo-
calization method: we only need to replace the concept of
“executed statements” by that of “used rules”, but can keep
the remaining established framework in place. We therefore
introduce the notion of grammar spectra which summarize
which of the grammar rules have been (partially) applied in
an attempt to parse an input. We show how grammar spec-
tra can be collected for both LL and LR parsers. The main
technical challenge is to identify partially applied rules in
cases where an LR parser encounters a syntax error and thus
fails to execute the reduction steps that mark the completion
of rule application. We show that the missing rules can be
recovered from the kernel items contained in the states that
are on the parser stack when it encounters a syntax error.
The collection of the grammar spectra requires runtime

support from the parser, which needs to log the rules that are
applied. Parsers generated by ANTLR [2] already provide
this support through some extensions, but parsers generated
by CUP [1] do not. We have therefore extended CUP itself
to generate parsers with the required logging. We then used

15

https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3357766.3359538
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3357766.3359538&domain=pdf&date_stamp=2019-10-20

SLE ’19, October 20–22, 2019, Athens, Greece Moeketsi Raselimo and Bernd Fischer

parsers generated by ANTLR and CUP from grammars with
both seeded and real faults to evaluate our method; the latter
grammars include different real-world grammars for the
Pascal language as well as student submissions in several
compiler engineering courses. The evaluation results show
that our method can identify grammar bugs with a high
precision: it ranks the seeded faults within the top five rules
in more than half of the cases and can pinpoint them (i.e.,
uniquely rank them as most suspicious) in 10%–40% of the
cases. On average, it ranks the faults at around 25% of all rules,
and better than 15% for a large test suite. It also allowed us to
identify deviations and faults in the real world and student
grammars, which both contain multiple real faults.

Our approach works at a higher level of abstraction than
generic SFL approaches and returns fault locations in domain-
specific terms (i.e., rules rather than statements). This has
several advantages. First, it simplifies any subsequent repair
attempts—grammar writers can directly use our results and
do not need to manually trace back from the parser’s im-
plementation to the grammar’s rules. Second, it increases
the localization precision because it discards all aspects of
the parser’s internal bookkeeping and error handling code
that could impact the localization process if generic program
spectra were used. Third, it can also be meaningfully applied
when the parser uses a table-driven implementation and
there is no direct representation of the individual rules as
executable code; this is typically the case for LR parsers.
Outline and contributions. In Section 2, we fix the basic
grammar notations that we use in this paper and give the nec-
essary background on spectrum-based fault localization. In
Section 3, we define the notion of grammar spectrum that is
at the core of our work and illustrate it with a worked exam-
ple. In Section 4, we describe our implementation of grammar
spectrum extraction for the ANTLR and CUP parser genera-
tors. In Section 5, we evaluate our method over grammars
with seeded faults as well as real world grammars and sub-
mitted student grammars that contain real faults. The results
show that our method can in many cases identify a faulty
rule precisely, even in the presence of multiple, real faults.
In Sections 6 and 7, we discuss related work and conclude
with suggestions for future work.

In summary, we make the following contributions in this
paper: (i) we present the first method to localize faulty rules
in a context-free grammar; (ii) we describe an implementa-
tion of our method using the ANTLR and CUP parser gen-
erators; and (iii) we demonstrate the effectiveness of our
method over grammars with seeded faults as well as real-
world grammars and student submissions from compiler
engineering courses that contain multiple real faults.

2 Background and Notation

Grammars and meta-variables. A context-free grammar
(or simply grammar) is a four-tuple G = (N ,T , P , S) with

N ∩ T = ∅, P ⊂ N × (N ∪ T)∗, and S ∈ N . We call N its
non-terminal symbols, T its terminal symbols or tokens, P
its production rules (or simply productions or rules), and S
its start symbol. We also write A → γ for a rule (A,γ) ∈

P . We follow the notation in [4, Section 4.2.2] and use the
meta-variables A,B,C, . . . for non-terminals, a,b, c, . . . for
terminals,X ,Y ,Z for grammar symbols inV = N∪T ,u,v, . . .
for strings of terminals or words, α , β,γ , . . . for strings of
grammar symbols or sentential forms, with ϵ denoting the
empty string, and p,q, . . . for rules. We use |α | to denote the
length of a string. We assume that P contains only one rule
S → α , and that S does not occur in any other rule.
Items. An item is a ruleA → α •β with a designated position
(denoted by •) on its right-hand side. An item is called kernel
item if α , ϵ or α = ϵ and A = S . We use P• to denote the
set of all items, i.e., all rules with all designated positions.
Derivations and generated language. A derivation overG
⇒G ⊆ V ∗ ×V ∗ relates sentential forms according toG. We
use αAβ ⇒G αγ β to denote that αAβ produces (or derives)
αγ β by application of the ruleA → γ ∈ P . We write⇒ if the
grammar is clear from the context and⇒R ifA → γ ∈ R ⊆ P .
We use ⇒∗ for the reflexive-transitive closure.

The yield of a sentential form α is the set of all words that
can be derived from it, i.e., yield(α) = {w ∈ T ∗ | α ⇒∗ w}. α
is nullable if ϵ ∈ yield(α). The language L(G) generated by a
grammar G is the yield of its start symbol, i.e., L(G) = {w ∈

T ∗ | S ⇒∗ w}.
A derivation S ⇒∗ αAβ ⇒ αγ β ⇒∗ w is k-prefix bounded

for w if for any derivation step we have either α ∈ T ∗ and
|α | < k or γ = µν , µ is not nullable, w = uv and |u | ≤ k ,
such that αµ ⇒∗ u and νβ ⇒∗ v . Intuitively, this means that
a k-prefix bounded derivation for w never expands a non-
terminal symbol whose yield inw will ultimately start only
beyond a prefix of length k . We will later use this concept to
rule out derivations past a syntax error.
Test suites. A test suite consists of a list of UUT inputs and
corresponding expected outputs (which can also be a specific
system error, e.g., for illegal inputs). The UUT passes a test
if it produces the expected output for the given input. In
our case, test inputs are wordsw ∈ T ∗, expected outputs are
either “accept” or “reject”. More detailed expected outputs
(e.g., error locations) could prevent the mis-classification
of applied rules, and so increase the precision of the fault
localization, but are difficult to implement because they may
depend on internal aspects of the parser (e.g., error correction
strategy).
Grammar-based test suite construction. For our exper-
imental evaluation we use several test suites that satisfy
different grammar coverage criteria [26] such as rule or cdrc
coverage. We use a generic coverage algorithm that follows
the approach of Fischer et al. [16] to construct these test
suites. The algorithm constructs a minimal embedding for
each coverage target (i.e., the instantiation of the criterion for

16

Spectrum-Based Fault Localization for CFGs SLE ’19, October 20–22, 2019, Athens, Greece

a given symbol) and merges identical test satisfying different
targets.
Failure, error, fault. The informal notion of a “bug” can be
deconstructed into three different concepts [51]. A failure
is a situation where the system’s observed output deviates
from the correct output, an error is an internal system state
that may lead to a failure, and a fault is a code fragment
which causes an error in the system when it is executed.
Note that errors do not necessarily manifest themselves as
observable failures. Fault localization is an attempt to identify
the unknown position of the fault from an observed failure.
Program spectra. A program spectrum is a representation of
the execution information for the UUT’s individual program
elements; most SFLmethods use (binary) statement coverage,
i.e., record whether a statement has been executed for a
given test or not. The spectra for the individual tests are
then correlated with the test outcomes and aggregated into
four basic counts for each individual program element e:
ep(e) resp. ep(e) are the number of passed resp. failed tests in
which e is executed, while np(e) resp. np(e) are the number
of passed resp. failed tests in which e is not executed. Note
that these counts are related to each other via the number
of passed tests tp (resp. failed tests tf) in the test suite, i.e.,
ep(e) + np(e) = tp and ef (e) + nf (e) = tf for each e .
Ranking metrics. SFL methods use the basic counts to com-
pute for each program element a suspiciousness score; ele-
ments that are ranked higher (i.e., have a higher score) are
seen as more likely to contain a bug. The methods (which
are traditionally called ranking metrics, even though they are
not proper metrics) differ in the formulas used for the score
computation. In this paper, we use four ranking metrics that
are widely used in SFL. Table 1 shows their score definitions.
Note that Tarantula is the only metric that uses the number
of passed tests np(e) in which an element e is not executed.
Note also that DStar is parameterized over the exponent n;
here, we use the most common value n = 2. DStar becomes
undefined for an element e if it is executed only in failing
test cases. We assign a maximal score in this case, since we
consider e to be the most suspicious element.

The metrics become undefined or degenerate and rank all
elements equally if the test suite does not contain at least
one failing test; similarly, the metrics become undefined or
simply rank the elements by occurrence count if the test
suite does not contain at least one passing test. We therefore
assume in our work that test suites indeed contain at least
one failing and one passing test.
Ranking metrics can assign the same score to different

elements. For ranking purposes, we need to resolve such ties
and assign a well-defined rank to all tied elements. Here we
use the mid-point of the range of elements with the same
score; the assigned rank then indicates how many elements
a user is expected to inspect before they find the fault if
elements with the same score are inspected in random order.

Table 1. SFL ranking metrics

Ranking metric score(e)

Tarantula [23]
ef (e)

ef (e)+nf (e)
ef (e)

ef (e)+nf (e)+
ep(e)

ep(e)+np(e)

Ochiai [38] ef (e)
√
(ef (e)+nf (e))(ef (e)+ep(e))

Jaccard [12] ef (e)
ef (e)+nf (e)+ep(e)

DStar [52] ef (e)n

nf (e)+ep(e)

Amore pessimistic variant uses the lowest possible rank that
is consistent with the scores; this would result in a worst-case
estimate of the number of elements to be inspected.

3 Grammar Spectra
We can informally define a grammar spectrum as the set of all
rules R ⊆ P that are applied when a wordw in the test suite
is successfully parsed. But which rules should be taken as
applied when the parser rejectsw? Since this depends on the
nature of the applied parser, we first formalize our intuition
in terms of arbitrary derivations and then concretize it for
LL and LR parsers. In the following we assume that G =
(N ,T , P , S) is the UUT, so w ∈ L(G) (resp. w < L(G)) only
means that the parser accepts (resp. rejects)w ; each outcome
can be associated with a passing or a failing test.
The formal definition of grammar spectra for accepted

words directly follows our intuition.

Definition 1 (positive grammar spectrum). If S ⇒p1 α1 ⇒p2

α2 ⇒p3 · · · ⇒pn αn = w , then R =
⋃

i pi is called a positive
grammar spectrum forw .

If the parser rejects w , then we construct the spectrum
from all rules that have been applied to the left of the error
position; more precisely, we look at the productions used in
a k-prefix bounded derivation.

Definition 2 (negative grammar spectrum). Assume w =
uav < L(G) with |u | = k maximal such that there existsw ′ =

uv ′ ∈ L(G). Let S ⇒p1 α1 ⇒p2 α2 ⇒p3 · · · ⇒pn uα ⇒∗ uv ′

be a k-prefix bounded derivation for w ′. Then R =
⋃

i pi is
called a negative grammar spectrum forw .

Any partial derivation that completely consumes the unique
longest valid prefix u of w but does not apply any rules
beyond the location of the syntax error (i.e., a) induces a
negative spectrum. However, since the continuation v ′ is
not unique,w may induce several negative spectra. We can
make Definition 2 more precise by considering the union
of all spectra for all possible continuations v ′. Note that a
strict interpretation of Definition 2 does not allow any error

17

SLE ’19, October 20–22, 2019, Athens, Greece Moeketsi Raselimo and Bernd Fischer

prog → program id = block .
block → { (decl ;)∗ (stmt ;)∗ }
decl → var id : type
type → bool | int
stmt → sleep | if expr then stmt (else stmt)? |

while expr do stmt | id = expr | block
expr → expr = expr | expr + expr | (expr) | id | num

Figure 1. Example grammar Gtoy

program x = { x = (x); }.
program x = { x = x + x; }.
program x = { x = x; }.
program x = { x = x = x; }.
program x = { x = 0; }.
program x = { if x then sleep; }.
program x = { if x then sleep else sleep; }.
program x = { sleep; }.
program x = { var x : bool; }.
program x = { var x : int; }.
program x = { while x do sleep; }.
program x = { { }; }.
program x = { }.

Figure 2. Test suite for Gtoy satisfying rule-coverage

corrections by the parser; however, in our experimental eval-
uation we will also consider a relaxed variant that includes
error corrections.
Running example. We illustrate our method with a worked
example based on the toy grammar Gtoy shown in Figure 1
and a corresponding test suite satisfying rule-coverage, as
shown in Figure 2.

We assume that the grammar developer hasmademistakes
in both the if - and while -rule,

stmt → . . . | if expr then stmt else stmt
| while expr do block | . . .

requiring the else -branch to be present and restricting the
body of while -loops to be blocks.

We then create a parser for this faulty versionG ′
toy and run

it over the test suite to collect the grammar spectra shown in
Table 2. We finally compute the scores according to the four
ranking metrics shown in Table 1 and rank the rules; note
how different execution counts can lead to the same scores
(see for example stmt:1 and stmt:3 for Tarantula), resulting
in ties.
All four metrics rank the faulty while -rule (i.e., stmt:3)

top. Tarantula and DStar pinpoint it as the unique most sus-
picious rule, while Ochiai and Jaccard rank it as tied first
together with the correct sleep -rule (i.e., stmt:1). The sec-
ond fault is more difficult to localize because the faulty rule is
executed in both failing and passing test cases. Tarantula and
DStar rank it as tied second together with the sleep -rule
(although for different reasons). Jaccard ranks it third, while
Ochiai ranks it only fourth, even behind the rule expr → id
that is applied in most derivations.

If we inspect the rules in rank order and resolve ties by
picking rules arbitrarily, we have on average to look at 2.5
rules (i.e., 16.7% of all rules) before we find both faults using
Tarantula or DStar, 3 rules (or 20%) using Jaccard, and 4 rules
(or 26.7%) using Ochiai.

4 Implementation
In order to collect the grammar spectra, we need to modify
the parser to log which rules it has applied. The nature of the
modifications depends on the general parsing technology
and the specifics of the parser; here we describe the modifi-
cations we made to the ANTLR and CUP parser generators.

4.1 Recursive-descent Parsers: ANTLR
Since LL parsers build the derivation top-down, left-to-right,
every step αi ⇒pi αi+1 adds the corresponding rule pi to the
spectrum, whether the derivation ends in success or not. In
a simple recursive-descent parser, each rule is implemented
by its own parsing function, and each step corresponds to a
call to one of these functions. Hence, a grammar spectrum is
a set of parse functions entered at least once in a derivation.
This definition is applicable for both valid and invalid words.
The only difference is that for an invalid word (i.e., w ′ <
L(G)), there is at least one function which was entered and
never exited successfully.

In a simple recursive-descent parser, spectrum collection
is thus a simple logging task that can be implemented easily,
for example using aspect-oriented programming. However,
ANTLR generates adaptive LL(*) parsers that use unbounded
look-ahead, which complicates the structure of the parse
functions. It provides runtime support to automate collec-
tion of grammar spectra through tree walkers but this only
works when it actually completes the parse and builds a tree.
ANTLR’s error recovery strategy allows it to do so in most
cases, but this means that rules used after any error recovery
will be mis-classified in the spectrum.

We therefore turned off error recovery, forcing the parser
to bail out without returning a parse tree when it encounters
the first syntax error. We then used aspect-oriented program-
ming to track all calls to ANTLR’s internal enterOuterAltNum
method that sets the rule and alternative fields in the tree. In
this way, we can (in principle) extract spectra conforming to
Definitions 1 and 2. In practice, however, we encountered two
problems that can cause the extracted spectra to be wrong.
First, ANTLR’s powerful adaptive LL(*) parsing mechanism
can cause it to raise a syntax error (typically no viable
alternative) without actually entering the parse function
for the corresponding rule. Second, ANTLR’s tracking of rule
applications is wrong (i.e., the call to enterOuterAltNum is
missing, see the open issue #2222) for grammars that contain
left-recursive rules.

18

Spectrum-Based Fault Localization for CFGs SLE ’19, October 20–22, 2019, Athens, Greece

Table 2. Grammar spectra, suspiciousness scores, and ranks for the faulty grammar version G ′
toy and rule test suite; ✓(resp. ✗)

indicates execution in a passing (resp. failing) test cases. Ranks are only shown for rules with non-zero scores; ties are indicated
by a preceding “=”. Scores in italics indicate rules ranked ahead of or tied with any faulty rule. Faulty rules are shown in bold.

rule 1 2 3 4 5 6 7 8 9 10 11 12 13 ep np ef nf Tarantula Ochiai Jaccard DStar
prog ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 11 0 2 0 0.50 =5 0.39 =5 0.15 =5 0.36 =5
block ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 11 0 2 0 0.50 =5 0.39 =5 0.15 =5 0.36 =5
decl ✓ ✓ 2 9 0 0 0.00 - 0.00 - 0.00 - 0.00 -
type:1 ✓ 1 10 0 0 0.00 - 0.00 - 0.00 - 0.00 -
type:2 ✓ 1 10 0 0 0.00 - 0.00 - 0.00 - 0.00 -
stmt:1 ✗ ✓ ✓ ✗ 2 9 2 0 0.85 =2 0.71 =1 0.50 =1 2.00 =2
stmt:2 ✗ ✓ 1 10 1 1 0.85 =2 0.50 4 0.33 3 2.00 =2
stmt:3 ✗ 0 11 1 1 1.00 1 0.71 =1 0.50 =1 4.00 1
stmt:4 ✓ ✓ ✓ ✓ ✓ 5 6 0 2 0.00 - 0.00 - 0.00 - 0.00 -
stmt:5 ✓ 1 10 0 2 0.00 - 0.00 - 0.00 - 0.00 -
expr :1 ✓ 1 10 0 2 0.00 - 0.00 - 0.00 - 0.00 -
expr :2 ✓ 1 10 0 2 0.00 - 0.00 - 0.00 - 0.00 -
expr :3 ✓ 1 10 0 2 0.00 - 0.00 - 0.00 - 0.00 -
expr :4 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 5 6 2 0 0.79 4 0.53 3 0.29 4 0.80 4
expr :5 ✓ 1 10 0 2 0.00 - 0.00 - 0.00 - 0.00 -

state corresponding kernel items
2 prog → program • id = block .
3 prog → program id • = block .
4 prog → program id = • block .
5 block → { • ((decl ;)∗ (stmt ;)∗) }
8 stmt → while • expr do stmt
50 stmt → while expr • do stmt

expr → expr • = expr
expr → expr • + expr

51 stmt → while expr do • stmt

Figure 3. CUP parse stack on syntax error.

4.2 Table-driven LR Parsers: CUP
In bottom-up parsing, application of a rule is carried out
by two main operations, shift and reduce. For a valid word
w ∈ L(G) we can rely simply on the reduce operation to
extract the spectrum, since the reduction concludes the rule
application. Since CUP does not provide the required logging
capabilities, we added this to the table interpreter.

For negative spectra, we use the logging extension in the
reduce operation to capture the fully applied rules to the left
of the syntax error but we also need to capture the partially
applied rules. In LR parsing, these are reflected in the states
that are on the parser stack when it encounters an error:
each state represents a set of items {Ai → αi • βi }, each
kernel item Ai → αi • βi with αi , ϵ represents a partially
applied rule, and the yield of each βi describes the prefixes of
possible continuations v ′ (see Definition 2). We could even
re-construct the k-prefix bounded derivation from the rules
in the kernel items and the logged successful rule applica-
tions, but we would need to log more details to obtain the
right order. We added a simple stack traversal to the table
interpreter that replaces the normal error handling routine
which may modify the stack. We collect the rules in the ker-
nel items in each state by analyzing CUP’s output when it
builds the parse tables.

Figure 3 shows CUP’s parse stack when it uses the modi-
fied grammar G ′

toy to parse the test program
program x = { while x do sleep }.

and encounters the syntax error at sleep. The stack traver-
sal gives us the (partial) spectrum {prog:1, block:1, stmt:4,
expr:1,expr:2}. In addition, we get expr:4 as result of a suc-
cessful reduce operation.

5 Evaluation
We evaluate our method over grammars with seeded faults as
well as real world grammars and student grammars submit-
ted in compiler engineering courses that contain real faults.
In this section we present the details of our evaluation.

5.1 Fault Seeding

Experimental setup. In a first series of experiments we
used fault seeding to evaluate the efficacy of our method
for different parsing techniques, test suites, and ranking
metrics. We used the grammar of a small programming lan-
guage called SIMPL as basis for these experiments. SIMPL
was originally designed for use in a second-year computer
architecture course at our university, where students were
given an LL(1) grammar for SIMPL in EBNF format, and
had to manually implement a recursive-descent parser. We
derived grammars for ANTLR (v4) and CUP (v0.11b) from
this version. The ANTLR version required left-factorization.
It contains 84 rules, 42 non-terminal symbols, and 47 termi-
nal symbols. The CUP version required the elimination of
the EBNF extensions. It contains 80 rules, 32 non-terminal
symbols, and 47 terminal symbols.

We then mutated the grammars by blindly applying indi-
vidual symbol edit operations (deletion, insertion, substitu-
tion, and transposition) at every position on the right-hand
side of every rule of the grammars.We discarded all grammar

19

SLE ’19, October 20–22, 2019, Athens, Greece Moeketsi Raselimo and Bernd Fischer

mutants that do not allow the parser generator to produce
a parser (e.g., by introducing indirect left-recursion in an
ANTLR grammar). This leaves us with 32274 mutants for
ANTLR and 26628 mutants for CUP.

We then executed each mutant on five different test suites
derived from the original EBNF form of the SIMPL grammar.
The first two test suites, rule and cdrc, contain only passing
test cases. They are constructed according to the rule and
cdrc coverage criteria [26], respectively, and contain 43 and
86 test cases, respectively. Note that rule is a proper subset
of cdrc. The test suite cdrc+nlr contains the 86 positive test
from cdrc and 2522 negative tests that are constructed us-
ing an implementation of Zelenov’s negative LR algorithm
[57]. large is very large, varied test suite that contains 2964
positive tests and 32157 negative tests. The positive tests
are constructed according to four different coverage criteria
(cdrc2, step6, deriv, and pair) we developed to produce diverse
test suites. The negative tests are constructed using token
mutation over the rule test suite, and using mutation of the
rules themselves [42]. instructor refers to the test suite the in-
structor used to grade the student submissions. It comprises
20 (syntactically) positive and 61 negative tests.
A grammar mutant is killed by a test suite if the parser

fails on at least one test case; however, we consider a mutant
not killed if the parser fails on all test cases, because the
metrics then become undefined or degenerate as discussed
in Section 2. For ANTLR, we also considered a mutant as not
killed if it requires the application of a left-recursive rule,
because the computed grammar spectra are known to be
wrong (see the discussion in Section 4.1).

For each grammar mutant killed by the test suite we or-
dered the rules by the scores produced by each of the ranking
metrics and computed the mutated rule’s predicted rank. We
resolved ties using the middle rank, as discussed in Section 2.

Results. Figure 4 shows the results of these fault seeding
experiments as a series of boxplots. Each boxplot summarizes
the ranks predicted by the corresponding metric for the
mutated (i.e., faulty) rules, given a specific parsing method
and test suite. The boxes show the Q3/Q1 interquartile range
of the ranks, i.e., the upper end of the box corresponds to
the 75th percentile (i.e., in 75% of the cases the faulty rule is
ranked better than the indicated value) while its lower end
corresponds to the 25% percentile. The median is indicated
by a dotted line across the box. The“whiskers” extend from
the 5th to the 95th percentile. Table 3 contains more details.
While the details change with the applied parsing tech-

nology and ranking metric, and the underlying test suite,
Figure 4 and Table 3 show overall positive results. On av-
erage, the metrics rank the faulty rules at ∼25% of all rules
(i.e., within the top 20 of 80 rules), with better results for the
large test suite (∼15%) and worse results for the instructor
test suite (∼35%). The median is typically at 2.5%–5%, and
so much smaller than the mean. Hence in more than half of

the cases the metrics rank the faulty rule within the top five
rules, and in 10%–40% of the cases they correctly pinpoint it.

While we have not statistically analyzed the results in de-
tail, a few observations can be made. First, fault localization
works better for CUP than for ANTLR: for CUP we univer-
sally achieve lower mean and median values, independent of
the test suite and the ranking metric, and typically pinpoint
a higher fraction of the observed faults (with Tarantula the
only metric under which results for ANTLR are sometimes
better than those for CUP).
Second, ANTLR’s error correction introduces noise into

the spectra that compromises the quality of the fault local-
ization. ANTLR with bail-out on error uniformly produces
better results than ANTLR∗ with error correction, although
the differences are smaller than between ANTLR and CUP.

Third, without detailed statistical analysis there is no clear
winner visible between Ochiai, Jaccard, and DStar, but all
three seem to outperform Tarantula, except for the large test
suite, where Tarantula produces the tightest interquartile
range and the lowest mean (although not the lowest median
nor the highest fraction of top-ranked faults).

Fourth, the localization performance depends strongly on
the size and variance of the test suite. The difference of the
results between the rule and cdrc test suites that contain very
similar positive test cases is marginal, despite the fact that
cdrc includes rule. In contrast, both of them induce substan-
tially better results than the manually constructed instructor
test suite whose size is between both of them. This also in-
dicates that it is hard to manually construct test suites that
are well suited for fault localization.

Finally, our simple pass/fail oracle seems to be too simple
for negative test cases, as adding the nlr tests to the cdrc test
suite degrades the localization performance.

Threats to validity. In addition to the usual concerns about
construct (i.e., implementation and data collection errors)
and statistical conclusion validity, we see several threats to
the validity of generalizing our observations above beyond
the experimental setup, e.g., to other rankingmetrics, parsing
methods, grammars, or test suites. Our fault seeding experi-
ments are based on a single grammar; since test suite con-
struction, mutant construction, and spectrum collection all
depend on the structure of the grammar, different grammars
may yield different results. We encountered this when we
used an ANTLR version that was not left-factorized, which
triggered the rule tracking issues described in Section 4.1
and led to incomplete spectra that distorted the results. Our
fault seeding also includes mutations at the first symbol of a
rule, which may produce non-LL(1) mutants that also trigger
the rule tracking issues and so distort results; preliminary
analysis has shown that the localization performance can
differ by 15 rules (i.e., close to 20 percentage points) between
mutations at the first and at other symbols. We will conduct
further experiments to address this threat.

20

Spectrum-Based Fault Localization for CFGs SLE ’19, October 20–22, 2019, Athens, Greece

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

Figure 4. Results of fault seeding experiments over SIMPL grammar. Columns show results for different parsers, left to right:
ANTLR (without error correction), ANTLR∗ (with default error correction) and CUP. Rows show results for different test
suites, top to bottom: rule (43 positive tests), cdrc (86 positive tests), cdrc+nlr (86 positive tests, 2522 negative tests), large (2964
positive tests, 32157 negative tests), instructor (20 positive tests, 41 negative tests). Table 3 contains more details.

Gopinath et al. [17] have shown that mutants are not
syntactically close to real faults, but there is evidence that
they are nevertheless a valid substitute in many software
engineering applications, including fault localization [24].
However, grammar mutations as we have used here have
not been investigated, and other mutation operations (e.g.,
adding epsilon-productions or deleting entire rules) may

yield different results. Hence, even though our localization
experiments with student grammars (see Section 5.3) show
similar results, care should be taken in generalizing the re-
sults above.

The experiments have shown that the localization perfor-
mance depends on the test suites andmay thus not generalize,
despite the differences in the test suites we have used. The

21

SLE ’19, October 20–22, 2019, Athens, Greece Moeketsi Raselimo and Bernd Fischer

Table 3. Detailed results of fault seeding experiments over SIMPL grammars. x̃ and x̄ denote the median and mean rank,
respectively, of the seeded fault. #1 denotes the number of cases where the metric ranked the seeded fault as most suspicious.

Tarantula Ochiai Jaccard DStar
killed x̃ x̄ #1 x̃ x̄ #1 x̃ x̄ #1 x̃ x̄ #1

ANTLR rule 25630 4.4% 25.7% 6313 2.5% 24.9% 7257 2.5% 24.9% 7260 2.5% 24.9% 7251
cdrc 25789 4.4% 25.9% 6649 1.9% 25.3% 7368 1.9% 25.4% 7369 1.9% 25.4% 7360
cdrc+nlr 27675 6.2% 26.7% 5596 4.4% 25.2% 6418 5.6% 26.1% 5684 4.4% 25.0% 6806
large 29265 3.8% 15.1% 9420 2.5% 14.8% 9368 2.5% 14.7% 9496 2.5% 16.9% 9006
instructor 27557 16.9% 36.3% 3806 3.8% 32.3% 6674 3.8% 32.5% 6493 3.1% 32.3% 6668

ANTLR* rule 25594 5.0% 25.7% 5812 2.5% 24.6% 6886 2.5% 24.6% 6887 2.5% 24.6% 6866
cdrc 25753 5.0% 25.9% 5994 2.5% 24.9% 7016 2.5% 25.0% 7016 2.5% 25.0% 7005
cdrc+nlr 27637 8.1% 29.3% 2518 6.3% 26.5% 3320 8.1% 28.0% 2703 6.3% 26.2% 3356
large 29227 3.8% 15.8% 9101 3.1% 16.5% 8123 3.8% 16.4% 8376 3.1% 18.8% 7801
instructor 27521 25.6% 42.7% 2170 8.8% 34.6% 4625 10.0% 34.8% 4538 8.8% 34.6% 4938

CUP rule 23650 3.1% 23.9% 7855 2.5% 23.2% 9992 2.5% 23.3% 9992 2.5% 23.3% 9992
cdrc 25429 3.1% 24.2% 8445 2.5% 23.6% 10590 2.5% 23.6% 10588 2.5% 23.6% 10586
cdrc+nlr 25429 6.3% 25.7% 5718 5.0% 24.4% 6561 6.3% 24.8% 5913 5.0% 24.4% 6590
large 26308 3.8% 11.7% 8773 2.5% 13.8% 10156 3.8% 14.0% 9512 2.5% 15.7% 10276
instructor 25537 13.8% 35.1% 2688 4.4% 32.3% 6913 5.0% 32.7% 6525 3.8% 32.2% 7457

large test suite contains tests that are constructed based on
the same principle as the mutants (i.e., rule mutation) and
may thus overestimate performance.

5.2 Real-world Grammars
In a second experiment, we compared two real-world Pascal
grammars with each other. These grammars have been de-
rived from different original sources, and even though they
both describe the “Pascal” language they contain differences,
as shown in previous work [31]. Due to the considerable free-
dom the CFG formalism allows grammar developers, these
differences are difficult to spot; even a different terminal
set does not necessarily indicate differences (e.g., one of the
grammars defines specific terminal symbols for the basic
types such as BOOLEAN while the other subsumes them un-
der identifiers). The purpose of this experiment is therefore
to evaluate whether our method can localize differences in
real-world grammars and so improve on the state-of-the-art,
which can only find counterexamples [31] or approximately
match non-terminals [16].

Experimental setup. In this experiment we used essen-
tially the same Pascal grammars as Madhavan et al. [31].
More specifically, we used the YACC grammar from ftp://ftp.
iecc.com/pub/file/pascal-grammar, which we converted into
CUP format, and the ANTLR (v4) grammar from github.com/
antlr/grammars-v4/blob/master/pascal/pascal.g4, whichwas
converted from the ANTLR (v3) version used by Madhavan
et al. [31]. Table 4 summarizes the characteristics of these
grammars.
Since neither of the two grammars can be considered as

true version, we followed a differential testing approach, i.e.,
we first used the BNF-variant of one grammar as “golden”
version or source to generate a test suite satisfying cdrc cov-
erage, which we then used to localize “faults” (more precisely,
deviations) in the other grammar. We finally switched roles
and ran the same experimental setup in the other direction.

In each direction, we used an iterative process to identify
deviations. In each step, we used the Tarantula metric to

Table 4. Characteristics of Pascal grammars (original and
BNF versions) and test suites

Type |T | |N | |P | |Nbnf | |Pbnf | |cdrc |
CUP 61 79 176 121 219 342
ANTLR 71 97 156 210 322 194

compute suspiciousness scores for all rules from the current
test suite, starting with the full cdrc test suite. We manually
identified a clearly visible cut-off value in the scores of the
highest ranked rules (typically the rules tied at top rank),
and picked one rule A → α above the cut-off. We computed
its “suspicious closure”, i.e., the set of all rules B → β where
either A ∈ β or B ∈ α that are also ranked above the cut-
off. We then selected all failing test cases in which any of
these rules was applied, and used the cdrc test targets (i.e.,
the rule in whose right-hand side the occurrence of a non-
terminal is replaced as well as the rule that is used in the
replacement) to identify the corresponding fragment in the
source grammar. We manually inspected the two fragments
to identify the cause of the deviation. We finally removed the
involved failing test cases from the test set and repeated this
process until Tarantula did not clearly identify any further
suspicious rules or the test set became empty.
Results: CUP→ANTLR. Using the CUP grammar as source
and the ANTLR grammar as target gave us an initial set of
51 failing tests out of a total of 342 tests. In the first iteration,
Tarantula scored 14 rules tied at top rank and another three
rules above a cut-off value of 0.99.We picked the rule defining
formalParamList, which yields a suspicious closure group
comprising the following nine rules (note that we shortened
some non-terminal names for layout reasons; we also show
in parentheses the Tarantula score and the number of passing
and failing tests for each rule):
procedureAndFunctionDeclarationPart: (0.99: 1/21)

procedureOrFunctionDeclaration SEMI;
procedureOrFunctionDeclaration :

procedureDeclaration (0.99: 1/16)
| functionDeclaration; (1.00: 0/16)
procedureDeclaration: (0.99: 1/16)

22

ftp://ftp.iecc.com/pub/file/pascal-grammar
ftp://ftp.iecc.com/pub/file/pascal-grammar
github.com/antlr/grammars-v4/blob/master/pascal/pascal.g4
github.com/antlr/grammars-v4/blob/master/pascal/pascal.g4

Spectrum-Based Fault Localization for CFGs SLE ’19, October 20–22, 2019, Athens, Greece

PROCEDURE id (formalParamList)? SEMI block;
functionDeclaration : (1.00: 0/5)

FUNCTION id (formalParamList)?
COLON resultType SEMI block;

resultType: typeId; (1.00: 0/1)
formalParamList: (1.00: 0/16)

LPAR formalParamSection
(SEMI formalParamSection)* RPAR;

formalParamSection:
paramGroup (1.00: 0/9)

| VAR paramGroup (1.00: 0/2)
| FUNCTION paramGroup (1.00: 0/7)
| PROCEDURE paramGroup; (1.00: 0/2)
paramGroup: idList COLON typeId; (1.00: 0/16)

The rules in this group are applied in 16 different failing
test cases. One of them is

PROGRAM A0;
PROCEDURE A0(FUNCTION A0; FUNCTION A0); A0;

BEGIN
END.

which results from three different cdrc-targets1

formal_params → (formal_p_sects)
@1 formal_p_sects → formal_p_sects ; formal_p_sect

formal_p_sects → formal_p_sects ; formal_p_sect
@0 formal_p_sects → formal_p_sect

formal_p_sects → formal_p_sects ; formal_p_sect
@2 formal_p_sect → func_heading

and so traces through to four rules. Tracing through all of
the 16 tests gives us a corresponding fragment of the CUP
source grammar comprising of 16 rules.
proc_heading ::= PROCEDURE newident formal_params;
func_heading ::= FUNCTION newident function_form;
function_form ::= | formal_params COLON ident;
formal_params ::= | LPAR formal_p_sects RPAR;
formal_p_sects ::=

formal_p_sects SEMI formal_p_sect
| formal_p_sect;
formal_p_sect ::=

param_group | VAR param_group
| proc_heading | func_heading;
param_group ::= newident_list COLON paramtype;
paramtype ::=

ident
| ARRAY LBRAC index_specs RBRAC OF paramtype
| PACKED ARRAY LBRAC index_spec RBRAC OF ident;

A visual comparison of the two fragments then uncovers
two differences. First, the CUP definition for param_group
uses paramtype after the COLON, which includes arrays and
packed arrays, while the corresponding ANTLR definition
paramGroup uses typeId, which only allows identifiers or
the pre-defined type names such as CHAR (which are sub-
sumed by identifiers in CUP). Second, the CUP definition
for formal_p_sect uses proc_heading and func_heading,
1Here the notation A → α @i B → β denotes the the modified rule
A → α ′ obtained by replacing the non-terminal B at position i in α by
β ; cdrc-coverage is then equivalent to rule-coverage with all such cdrc-
replacements.

which allows anonymous types for formal parameters of
procedure resp. function type, while the ANTLR grammar
requires explicitly defined types that are referenced by their
identifier.

In total, these two differences explain 14 of the 16 failing
test cases; we removed these from the test set and continued
with the second iteration. Here, Tarantula scored five rules
at top rank, and we picked variantPart, which induces a
suspicious closure group comprising the following five rules
(note that the first alternative for fieldList is not part of
the group but simply shown for completeness):
fieldList:

fixedPart (SEMI variantPart)? (0.59: 4/1)
| variantPart; (1.00: 0/10)
variantPart: (1.00: 0/10)

CASE tag OF variant (SEMI variant)*;
tag:

id COLON typeId (1.00: 0/1)
| typeId; (1.00: 0/9)
variant: (1.00: 0/10)

constList COLON LPAR fieldList RPAR;

Tracing through the cdrc-targets of the ten failing test
cases gives us again the corresponding CUP grammar frag-
ment (note that only the RECORD-alternative of struct_type
is part of the fragment):
struct_type ::= ... | RECORD field_list END;
field_list ::=

fixed_part
| fixed_part SEMI variant_part
| variant_part;
fixed_part ::=

fixed_part SEMI record_section | record_section;
record_section ::= | newident_list COLON type;
variant_part ::= CASE tag_field OF variants;
tag_field ::= newident COLON ident | ident;
variants ::= variants SEMI variant | variant;
variant ::=

| case_label_list COLON LPAR field_list RPAR;

We can then see the difference: the CUP grammar allows
an empty list of variants in the variant_part while the
ANTLR grammar requires a non-empty list.

In the third iteration, Tarantula identifies the rules
procedureDeclaration:

PROCEDURE id (formalParamList)? SEMI block
functionDeclaration:

FUNCTION id (formalParamList)?
COLON resultType SEMI block;

as highly suspicious. The corresponding rules can easily be
identified in the CUP grammar. They use a non-terminal
body which is defined as block | IDENTIFIER instead of
block; comments in the grammar explain that the identifier
represents the FORWARD-directive but that is not enforced by
the parser.
In the next two iterations, Tarantula identifies problems

with the fixed part of records and case list elements that are
similar to the problem with variant records identified in the

23

SLE ’19, October 20–22, 2019, Athens, Greece Moeketsi Raselimo and Bernd Fischer

second iteration. For example, CUP allows its fixed_part
to become empty before the SEMI token, and hence admits
a type RECORD ; END while ANTLR rejects this type. After
the fifth iteration, the spectra become too noisy and we can-
not see any clearly suspicious rules anymore; we therefore
terminate the analysis.
In total, the fault localization allowed us to restrict our

attention to 25 (out of 156) ANTLR rules to identify five
grammar differences. Tracing through the cdrc targets re-
stricted the number or CUP rules we needed to inspect to 45
out of 176 rules.
Results: ANTLR→ CUP . We then switched roles and used
the ANTLR grammar as source from which we derived the
test suite and the CUP grammar as fault localization target.
We get an initial set of 47 failing tests out of a total of 194
tests. Using the same iterative approach as above, Taran-
tula ranks in the first iteration the two rules type_def and
type_dcl_part at the very top. These two rules have been
applied in 25 of the failing tests.

type_dcl_part ::= TYPE type_defs SEMI;
type_defs ::= type_defs SEMI type_def | type_def;
type_def ::= newident EQ type;
type ::= simple_type
| PACKED struct_type
| struct_type
| CAP ID;

Here, the structure of the failing tests such as

PROGRAM id;
TYPE id = PROCEDURE(FUNCTION id : BOOLEAN);

BEGIN
END.

gives us already a clue, as they all use function or procedure
type declarations. Tracing through the cdrc-targets to the
the corresponding fragment of the ANTLR source grammar
confirms that this has explicit function and procedure type
declarations while the CUP grammar only allows them in
formal parameter lists (cf. the related discussion above):

typeDefinitionPart: TYPE (typeDefinition SEMI)+;
typeDefinition:

id EQUAL (type | functionType | procedureType);

In the later iterations, the fault localization becomes less
discriminatory, largely because the ANTLR grammar de-
scribes more features of the language than its CUP counter-
part (for example, a rudimentary module system using the
UNIT and INTERFACE keywords).
Threats to validity. This experiment is subject to the simi-
lar threats to validity as the one described in the previous
section; in particular, the results may not generalize to other
pairs of grammars or to other ranking metrics. However, as
mitigation we used a broadly similar setup in the experi-
ments described in the following section, where we achieved
similar results.

Since the setup involves human judgements by the au-
thors, the results are also subject to possible experimenter
bias, human error, and human performance variation. We
tried to mitigate against this threat by following an exper-
imental protocol over unseen grammars, but this was not
fully defined (e.g., rule selection and choice of the cut-off
points).

5.3 Student Grammars
In a final set of experiments, we used student submissions
(which unsurprisingly contain many errors) to compiler en-
gineering courses at two different universities to see how
well our method performs over grammars with multiple real
faults.

Experimental setup. We used two languages, SIMPL (which
we also used for the fault seeding experiments in Section 5.1),
and Blaise, another imperative programming language of
similar syntactic complexity: the instructor’s version of the
grammar has 38 non-terminals, 40 terminals and 75 rules.
For SIMPL, we used the same positive test cases as in the
large test suite in Section 5.1 and the 8668 negative test cases
derived using rule mutation. For Blaise, we generated tests
using the same mechanism; this comprises 7280 positive and
9119 negative test cases.

Both languageswere used in compiler engineering courses.
In one course, the students were given the same EBNF as in
the computer architecture course (in fact, most students were
from a cohort that already used SIMPL in that course), and
were asked in two different assignments to use ANTLR and
CUP (or a similar LALR(1) parser generator of their choice) to
develop parsers for SIMPL. We randomly picked ten ANTLR
submissions, from which we discarded three that pass all
tests and one that did not produce a compilable parser. We
picked all ten CUP submissions, from which we discarded
two that pass all tests and one that passes none. For Blaise,
the students were given a textual language description and
a small set of short example programs. We randomly picked
nine Blaise grammars from 110 submissions, from which we
also discarded two that pass all tests. This leaves us with 20
subject grammars.

We then followed a similar iterative fault localization pro-
cess as described in the previous section. In each step, we
used the Ochiai metric to compute the suspiciousness scores
of the rules. We manually examined the rules in rank order
and used our understanding of the true grammars to iden-
tify and repair faulty rules. In each step, we only repaired
the top-ranked faulty rule; note that we made repairs in the
lexer as well. After each repair, we continued with the next
iteration, until the grammar under test passed all test cases.

Results. Table 5 summarizes the results of our evaluation
over student grammars. For space reasons, we do not show
one case that required eleven iterations. For each iteration,
we show the number of test cases failed by that grammar

24

Spectrum-Based Fault Localization for CFGs SLE ’19, October 20–22, 2019, Athens, Greece

version, and the rank of the rule that we identified as faulty
and repaired for the next iteration. This rank is based on an
optimistic tie-breaking strategy. Empty cells indicate that a
previous repair allowed the parser to pass all tests.
While we have no guarantee that we always pick the

“right” rule for repair, we can observe for all but one grammar
the number of failed test cases reduces after each repair; the
exception is #8, where the repair in iteration 2 triggers more
failing test cases. Here, the repair can be seen as the first
step in a multi-step refactoring that temporarily increases
the number of failures, which then drops significantly in
the subsequent iterations. Note also that the final repair of
#6 has no associated rank because the error was actually
in the lexer which returned an identifier token instead of
the AND-operator. In other cases, we could identify similar
lexical errors via the rules.

The most common issues are around the formal and actual
parameter lists of functions. These cannot be empty, but the
textual language specification was vague about this, and
many students interpreted this differently.

6 Related Work
We are not aware of any other work directly sharing our
goal of identifying faulty rules in a grammar but we draw
from a wide range of related work in different areas. Note,
however, that we co not consider traditional error recovery
methods in parsers [15] because they work on the input or
the parser state, not on the grammar.
Spectrum-based fault localization. Many different meth-
ods (e.g., static analysis, model-based reasoning, or deep
learning) have been applied to the problem of software fault
localization; Wong et al. [53] give a good survey of the entire
field. We focus on spectrum-based methods only [13, 53].
More than 30 different metrics have been proposed for

statement ranking [13, 36, 53], which were often originally
developed for problems in other domains such as botany
[38] or information retrieval. Many metrics produce identi-
cal rankings [14, 36]. Theoretical studies [54] trying identify
optimal metrics have not been borne out in practice [28]. We
use four of the most widely used metrics that have also per-
formed well in other experimental evaluations [3, 28]: Taran-
tula [23], Ochiai [38], Jaccard [12], and DStar [52]. Tarantula
is the only of these metrics that takes program entities into
account that are not executed in passing test cases (see Ta-
ble 4); however, experimental results [3, 52] show that Ochiai,
Jaccard, and DStar are more effective for software fault local-
ization. Abreu et al. [3] report the following average ranks
of the faulty statement over seven programs (with a size of
20-124 basic blocks) from the widely used Siemens bench-
mark suite: Tarantula 23%, Jaccard 22%, and Ochiai 7%, with
individual results varying between 1% and 50%.
Grammar smells. Faults in grammars can manifest them-
selves in non-terminal symbols that are non-productive or

unexpectedly nullable, or in ambiguities that could be re-
solved unexpectedly by a (deterministic) parser. While non-
productivity and nullability are easily checkable, ambiguity
is undecidable in general [9], although several practical ap-
proximations have been developed [5, 8, 46–48]. Basten’s
approach [5] identifies rules that are provably not involved
in an ambiguity and so helps with localization. LR parser
generators typically report any shift/reduce and reduce/re-
duce conflicts that they encounter; Isradisaikul and Myers
[22] produce “unifying counterexamples” for such situations
that can help users to debug their grammars.

However, none of these approaches can really be seen as
fault localization, because the situations that they detect are
grammar smells rather than necessarily faults. Consider for
example the traditional “dangling else” problem [4]. Most LR
parsers resolve the ambiguity indicated through shift/reduce
conflict by shifting, and so accept the intended language.

Grammar equivalence. Proving the equivalence of the gram-
mar under test to a given “golden” grammar can be seen
as an alternative to fault localization, similar to the way
proving a program correct is an alternative to testing. CFG
equivalence is of course well-known to be undecidable in
general, but decision algorithms have been developed for
several relevant subclasses, e.g., simple [6, 25], LL(k) [39], or
LL-regular grammars [37]. Madhavan et al. [31] describe a
system that implements several of these algorithms and can
produce counter-examples when it finds that the grammars
are not equivalent. Fischer et al. [16] uses systematic test
case generation and parsing to identify which non-terminals
accept the most similar languages, which can be seen as an
approximate, fine-grained equivalence check.

Grammar-based test case generation. Purdom’s seminal
paper [41] on the systematic generation of test suites from
grammars (see Malloy and Power [32] for a modern refor-
mulation) describes an algorithm that generates the minimal
number of sentences that is necessary to exercise all gram-
mar rules. Celentano et al. [10] extend Purdom’s algorithm,
providing both a minimal and a maximal strategy for gener-
ating sentences. Such test suites are not well suited for error
localization because the generated test suites are too small
and the individual test cases are too complex, and cover too
many rules.
Laemmel [26] defines context-dependent rule coverage,

which requires each rule to be applied to each non-terminal
occurrence in the grammar; this yields more detailed test
suites and has become a standard coverage criterion. In addi-
tion, we use a number of coverage criteria that we recently
developed to produce diverse positive test suites: cdrc2, a
variant of cdrc that induces longer words; step6, another vari-
ant of cdrc that induces deeper derivations; deriv, a variation
of Zelenov and Zelenova’s pll criterion [57] that also induces
deeper derivations; and pair, a criterion that ensures that all
possible pairs in the follow-relation are covered.

25

SLE ’19, October 20–22, 2019, Athens, Greece Moeketsi Raselimo and Bernd Fischer

Table 5. Results of fault localization in student grammars
iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6

language type #fail rank #fail rank #fail rank #fail rank #fail rank #fail rank
1 SIMPL CUP 557 1 254 1 131 1 98 1
2 SIMPL CUP 206 2 95 2
3 SIMPL CUP 498 1 40 1
4 SIMPL CUP 169 1 46 1
5 SIMPL CUP 853 1 378 1 219 1 130 1 37 1 6 1
6 SIMPL CUP 244 1 121 9 80 ✗
7 Blaise ANTLR 567 2 4 1 2 1
8 Blaise ANTLR 1082 1 535 3 7213 1 358 1 43 1 2 1
9 Blaise ANTLR 4 3 2 2
10 Blaise ANTLR 1068 1 4 2 2 1
11 Blaise ANTLR 38 4 3 1
12 Blaise ANTLR 654 1 1 1
13 Blaise ANTLR 4 2 2 1
14 SIMPL ANTLR 555 1 170 1 47 2 1 1
15 SIMPL ANTLR 37 5 1 1
16 SIMPL ANTLR 361 3 46 1
17 SIMPL ANTLR 396 1 117 2 81 2 47 1 1 1
18 SIMPL ANTLR 46 2
19 SIMPL ANTLR 356 1 233 2 1 1

Grammar-based test case generation has focused mostly
on generating syntactically correct programs (i.e., positive
tests), with scant attention paid to generation of programs
with well-defined syntactic errors (i.e., negative tests). We
use a variant of Zelenov and Zelenova’s [57] nlr algorithm
here. We have also developed two algorithms that construct
negative test suites using word and rule mutation [42].

In random sentence generation (which goes back to [18]),
rules are randomly selected and applied until a complete
sentence is derived. Such approaches typically use a large
number of control parameters (e.g., rule probabilities, symbol
and rule counts, length, depth, and balance restrictions, and
many others) to ensure that the derivation process termi-
nates, and that the generated test suites have certain charac-
teristics [7, 19, 21, 27, 33, 34, 40]. Such methods have been
used to test SQL [50], C [55], and Java [56] processors, and
are also applied in some fuzzing tools such as jsfunfuzz [44],
the CSS grammar fuzzer [45], or langfuzz [20].
Differential compiler testing. Differential testing [35] com-
pares the outputs of two different systems implementing the
same specification and flags errors whenever they disagree.
It is an appealing technique in domains such as compilers
where precise oracles are difficult to construct but multiple
systems exist [49]. Since many compiler bugs lurk in the
optimizer differential testing with the same compiler but
different optimization levels is an easily implementable ap-
proach [11]. Le et al. [29] describe another approach that
mutates test programs such that the mutants are guaranteed
to be semantically equivalent for the given test inputs (and
so should produce the same outputs) but are structurally
different and may so trigger different compilation paths. The
experiment described in Section 5.2 can also be seen as dif-
ferential testing.

7 Conclusions and Future Work
Grammars can contain bugs like any other software. Test-
ing can demonstrate the presence of bugs in grammars, but

does not directly give any further information about their
location. In this paper, we described and evaluated the first
method to localize faulty rules in a context-free grammar. We
proposed a spectrum-based fault localization method where
we replaced the concept of “executed statements” by that of
“used rules”, but kept the remaining established framework
in place.

Our evaluation showed that our method can identify gram-
mar bugs with a high precision. In a large fault seeding ex-
periment, it ranked the seeded faults within the top five
rules in more than half of the cases and pinpointed them
(i.e., uniquely ranked them as most suspicious) in 10%–40%
of the cases. On average, it ranked the faults at around 25%
of all rules, and better than 15% for a very large test suite.
We were also able to identify deviations and faults in real
world and student grammars, which contain multiple real
faults. Our work therefore improves on the state-of-the-art,
which can only find counterexamples [31].

Future work. In addition to extending our experimental
evaluation to further parsers and languages, we see several
interesting avenues for future work. First, we plan to analyze
ANTLR’s adaptive LL(*) parsing mechanism in detail to see
whether we can extract better spectra for non-LL(k) gram-
mars. Second, the mutation results in Section 5.1 indicate that
our handling of negative test cases may be too simplistic; we
will use test suites where the expected outcome includes the
error location. Third, we will modify the ranking functions
to take the structure of the grammar into account, in particu-
lar to replace the mid-rank tie breaking strategy. Both steps
should increase the precision of the localization. We will also
cluster the failed test cases by the ranked rules; this may help
users in pinpointing and ultimately repairing the actual fault.
Finally, we plan to investigate how approaches to automated
program repair [30] can be applied to grammars.

References
[1] 2014. CUP 0.11b. http://www2.cs.tum.edu/projects/cup/

26

http://www2.cs.tum.edu/projects/cup/

Spectrum-Based Fault Localization for CFGs SLE ’19, October 20–22, 2019, Athens, Greece

[2] 2018. ANTLR 4.7.2. https://www.antlr.org/
[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An

Evaluation of Similarity Coefficients for Software Fault Localization.
In 12th IEEE Pacific Rim International Symposium on Dependable Com-
puting (PRDC 2006), 18-20 December, 2006, University of California,
Riverside, USA. IEEE Computer Society, 39–46. https://doi.org/10.
1109/PRDC.2006.18

[4] Alfred V. Aho, Monica S. Lam Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (Second Edition). Addison-
Wesley.

[5] Hendrikus J. S. Basten. 2010. Tracking Down the Origins of Ambi-
guity in Context-Free Grammars. In Theoretical Aspects of Comput-
ing - ICTAC 2010, 7th International Colloquium, Natal, Rio Grande
do Norte, Brazil, September 1-3, 2010. Proceedings (Lecture Notes in
Computer Science), Ana Cavalcanti, David Déharbe, Marie-Claude
Gaudel, and Jim Woodcock (Eds.), Vol. 6255. Springer, 76–90. https:
//doi.org/10.1007/978-3-642-14808-8_6

[6] Cédric Bastien, Jurek Czyzowicz, Wojciech Fraczak, and Wojciech
Rytter. 2006. Prime normal form and equivalence of simple grammars.
Theor. Comput. Sci. 363, 2 (2006), 124–134. https://doi.org/10.1016/j.
tcs.2006.07.021

[7] D. L. Bird and C. U. Munoz. 1983. Automatic generation of random
self-checking test cases. IBM Systems Journal 22, 3 (1983), 229–245.
https://doi.org/10.1147/sj.223.0229

[8] Claus Brabrand, Robert Giegerich, and Anders Møller. 2010. Analyzing
ambiguity of context-free grammars. Sci. Comput. Program. 75, 3 (2010),
176–191. https://doi.org/10.1016/j.scico.2009.11.002

[9] David G. Cantor. 1962. On The Ambiguity Problem of Backus Systems.
J. ACM 9, 4 (1962), 477–479. https://doi.org/10.1145/321138.321145

[10] Augusto Celentano, Stefano Crespi-Reghizzi, Pierluigi Della Vigna,
Carlo Ghezzi, G. Granata, and Florencia Savoretti. 1980. Compiler
Testing using a Sentence Generator. Softw., Pract. Exper. 10, 11 (1980),
897–918. https://doi.org/10.1002/spe.4380101104

[11] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang,
Lu Zhang, and Bing Xie. 2016. An empirical comparison of compiler
testing techniques. In Proceedings of the 38th International Conference
on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,
Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM, 180–
190. https://doi.org/10.1145/2884781.2884878

[12] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and
Eric A. Brewer. 2002. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. In 2002 International Conference on De-
pendable Systems and Networks (DSN 2002), 23-26 June 2002, Bethesda,
MD, USA, Proceedings. IEEE Computer Society, 595–604. https:
//doi.org/10.1109/DSN.2002.1029005

[13] Higor Amario de Souza, Marcos Lordello Chaim, and Fabio Kon.
2016. Spectrum-based Software Fault Localization: A Survey of
Techniques, Advances, and Challenges. CoRR abs/1607.04347 (2016).
arXiv:1607.04347 http://arxiv.org/abs/1607.04347

[14] Vidroha Debroy and W. Eric Wong. 2011. On the equivalence of
certain fault localization techniques. In Proceedings of the 2011 ACM
Symposium on Applied Computing (SAC), TaiChung, Taiwan, March
21 - 24, 2011, William C. Chu, W. Eric Wong, Mathew J. Palakal, and
Chih-Cheng Hung (Eds.). ACM, 1457–1463. https://doi.org/10.1145/
1982185.1982498

[15] Lukas Diekmann and Laurence Tratt. 2018. Reducing Cascading Pars-
ing Errors Through Fast Error Recovery. CoRR abs/1804.07133 (2018).
arXiv:1804.07133 http://arxiv.org/abs/1804.07133

[16] Bernd Fischer, Ralf Lämmel, and Vadim Zaytsev. 2011. Comparison
of Context-Free Grammars Based on Parsing Generated Test Data. In
Software Language Engineering - 4th International Conference, SLE 2011,
Braga, Portugal, July 3-4, 2011, Revised Selected Papers (Lecture Notes
in Computer Science), Anthony M. Sloane and Uwe Aßmann (Eds.),
Vol. 6940. Springer, 324–343. https://doi.org/10.1007/978-3-642-28830-
2_18

[17] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How
Close are they to Real Faults?. In 25th IEEE International Symposium
on Software Reliability Engineering, ISSRE 2014, Naples, Italy, November
3-6, 2014. IEEE Computer Society, 189–200. https://doi.org/10.1109/
ISSRE.2014.40

[18] Kenneth V. Hanford. 1970. Automatic Generation of Test Cases. IBM
Systems Journal 9, 4 (1970), 242–257. https://doi.org/10.1147/sj.94.0242

[19] Daniel Hoffman, David Ly-Gagnon, Paul A. Strooper, and Hong-Yi
Wang. 2011. Grammar-based test generation with YouGen. Softw.,
Pract. Exper. 41, 4 (2011), 427–447. https://doi.org/10.1002/spe.1017

[20] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
Code Fragments. In Proceedings of the 21th USENIX Security Sympo-
sium, Bellevue, WA, USA, August 8-10, 2012, Tadayoshi Kohno (Ed.).
USENIX Association, 445–458. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

[21] William Homer and Richard Schooler. 1989. Independent Testing of
Compiler Phases Using a Test Case Generator. Softw., Pract. Exper. 19,
1 (1989), 53–62. https://doi.org/10.1002/spe.4380190106

[22] Chinawat Isradisaikul and Andrew C. Myers. 2015. Finding counterex-
amples from parsing conflicts. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015, David Grove and Steve Blackburn
(Eds.). ACM, 555–564. https://doi.org/10.1145/2737924.2737961

[23] James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of
the Tarantula automatic fault-localization technique. In 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2005),
November 7-11, 2005, Long Beach, CA, USA, David F. Redmiles, Thomas
Ellman, and Andrea Zisman (Eds.). ACM, 273–282. https://doi.org/10.
1145/1101908.1101949

[24] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid
Holmes, and Gordon Fraser. 2014. Are mutants a valid substitute for
real faults in software testing?. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014, Shing-Chi Cheung,
Alessandro Orso, and Margaret-Anne D. Storey (Eds.). ACM, 654–665.
https://doi.org/10.1145/2635868.2635929

[25] A. J. Korenjak and John E. Hopcroft. 1966. Simple Deterministic Lan-
guages. In 7th Annual Symposium on Switching and Automata Theory,
Berkeley, California, USA, October 23-25, 1966. IEEE Computer Society,
36–46. https://doi.org/10.1109/SWAT.1966.22

[26] Ralf Lämmel. 2001. Grammar Testing. In Fundamental Approaches
to Software Engineering, 4th International Conference, FASE 2001 Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings (Lec-
ture Notes in Computer Science), Heinrich Hußmann (Ed.), Vol. 2029.
Springer, 201–216. https://doi.org/10.1007/3-540-45314-8_15

[27] Ralf Lämmel and Wolfram Schulte. 2006. Controllable Combinatorial
Coverage in Grammar-Based Testing. In Testing of Communicating
Systems, 18th IFIP TC6/WG6.1 International Conference, TestCom 2006,
New York, NY, USA, May 16-18, 2006, Proceedings (Lecture Notes in
Computer Science), M. Ümit Uyar, Ali Y. Duale, and Mariusz A. Fecko
(Eds.), Vol. 3964. Springer, 19–38. https://doi.org/10.1007/11754008_2

[28] Tien-Duy B. Le, Ferdian Thung, and David Lo. 2013. Theory and Prac-
tice, Do They Match? A Case with Spectrum-Based Fault Localization.
In 2013 IEEE International Conference on Software Maintenance, Eind-
hoven, The Netherlands, September 22-28, 2013. IEEE Computer Society,
380–383. https://doi.org/10.1109/ICSM.2013.52

[29] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation
via equivalence modulo inputs. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav
Pingali (Eds.). ACM, 216–226. https://doi.org/10.1145/2594291.2594334

[30] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. 2012. A systematic study of automated program repair: Fixing

27

https://www.antlr.org/
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1007/978-3-642-14808-8_6
https://doi.org/10.1007/978-3-642-14808-8_6
https://doi.org/10.1016/j.tcs.2006.07.021
https://doi.org/10.1016/j.tcs.2006.07.021
https://doi.org/10.1147/sj.223.0229
https://doi.org/10.1016/j.scico.2009.11.002
https://doi.org/10.1145/321138.321145
https://doi.org/10.1002/spe.4380101104
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1109/DSN.2002.1029005
http://arxiv.org/abs/1607.04347
http://arxiv.org/abs/1607.04347
https://doi.org/10.1145/1982185.1982498
https://doi.org/10.1145/1982185.1982498
http://arxiv.org/abs/1804.07133
http://arxiv.org/abs/1804.07133
https://doi.org/10.1007/978-3-642-28830-2_18
https://doi.org/10.1007/978-3-642-28830-2_18
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1147/sj.94.0242
https://doi.org/10.1002/spe.1017
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1002/spe.4380190106
https://doi.org/10.1145/2737924.2737961
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/SWAT.1966.22
https://doi.org/10.1007/3-540-45314-8_15
https://doi.org/10.1007/11754008_2
https://doi.org/10.1109/ICSM.2013.52
https://doi.org/10.1145/2594291.2594334

SLE ’19, October 20–22, 2019, Athens, Greece Moeketsi Raselimo and Bernd Fischer

55 out of 105 bugs for $8 each. In 34th International Conference on
Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer
Society, 3–13. https://doi.org/10.1109/ICSE.2012.6227211

[31] Ravichandhran Madhavan, Mikaël Mayer, Sumit Gulwani, and Viktor
Kuncak. 2015. Automating grammar comparison. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan
Aldrich and Patrick Eugster (Eds.). ACM, 183–200. https://doi.org/10.
1145/2814270.2814304

[32] Brian A. Malloy and James F. Power. 2001. An Interpretation of Pur-
dom’s Algorithm for Automatic Generation of Test Cases. In 1st ACIS
Annual International Conference on Computer and Information Science.
http://eprints.maynoothuniversity.ie/6434/

[33] Peter M. Maurer. 1990. Generating Test Data with Enhanced Context-
Free Grammars. IEEE Software 7, 4 (1990), 50–55. https://doi.org/10.
1109/52.56422

[34] Peter M. Maurer. 1992. The Design and Implementation of a Grammar-
based Data Generator. Softw., Pract. Exper. 22, 3 (1992), 223–244. https:
//doi.org/10.1002/spe.4380220303

[35] William M. McKeeman. 1998. Differential Testing for Software. Digi-
tal Technical Journal 10, 1 (1998), 100–107. http://www.hpl.hp.com/
hpjournal/dtj/vol10num1/vol10num1art9.pdf

[36] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model
for spectra-based software diagnosis. ACM Trans. Softw. Eng. Methodol.
20, 3 (2011), 11:1–11:32. https://doi.org/10.1145/2000791.2000795

[37] Anton Nijholt. 1982. The Equivalence Problem for LL- and LR-Regular
Grammars. J. Comput. Syst. Sci. 24, 2 (1982), 149–161. https://doi.org/
10.1016/0022-0000(82)90044-7

[38] Akira Ochiai. 1957. Zoogeographical studies on the soleoid fishes
found in Japan and its neighhouring regions-II. Bulletin of the Japanese
Society of Scientific Fisheries 22, 9 (1957), 526–530. https://doi.org/10.
2331/suisan.22.526

[39] Tmima Olshansky and Amir Pnueli. 1977. A Direct Algorithm for
Checking Equivalence of LL(k) Grammars. Theor. Comput. Sci. 4, 3
(1977), 321–349. https://doi.org/10.1016/0304-3975(77)90016-0

[40] A. J. Payne. 1978. A Formalised Technique for Expressing Compiler
Exercisers. SIGPLAN Not. 13, 1 (Jan. 1978), 59–69. https://doi.org/10.
1145/953428.953435

[41] Paul Purdom. 1972. A Sentence Generator for Testing Parsers. BIT
(1972), 366–375.

[42] Moeketsi Raselimo, Jan Taljaard, and Bernd Fischer. 2019. Breaking
Parsers: Mutation-based Generation of Programs with Guaranteed
Syntax Errors. In Proceedings of the 12th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2019, Athens, Greece,
October 21-22, 2019. This volume.

[43] Manos Renieris and Steven P. Reiss. 2003. Fault Localization With
Nearest Neighbor Queries. In 18th IEEE International Conference on

Automated Software Engineering (ASE 2003), 6-10 October 2003, Mon-
treal, Canada. IEEE Computer Society, 30–39. https://doi.org/10.1109/
ASE.2003.1240292

[44] Jesse Ruderman. 2007. Introducing jsfunfuzz. http://www.squarefree.
com/2007/08/02/introducing-jsfunfuzz/

[45] Jesse Ruderman. 2009. CSS grammar fuzzer. http://www.squarefree.
com/2009/03/16/css-grammar-fuzzer/

[46] Sylvain Schmitz. 2007. Conservative Ambiguity Detection in Context-
Free Grammars. In Automata, Languages and Programming, 34th In-
ternational Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007,
Proceedings (Lecture Notes in Computer Science), Lars Arge, Christian
Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki (Eds.), Vol. 4596.
Springer, 692–703. https://doi.org/10.1007/978-3-540-73420-8_60

[47] Sylvain Schmitz. 2008. An Experimental Ambiguity Detection Tool.
Electr. Notes Theor. Comput. Sci. 203, 2 (2008), 69–84. https://doi.org/
10.1016/j.entcs.2008.03.045

[48] Friedrich Wilhelm Schröer. 2001. AMBER, An Ambiguity Checker for
Context-free Grammars. http://accent.compilertools.net/Amber.html

[49] Flash Sheridan. 2007. Practical testing of a C99 compiler using output
comparison. Softw., Pract. Exper. 37, 14 (2007), 1475–1488. https:
//doi.org/10.1002/spe.812

[50] Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In VLDB’98,
Proceedings of 24rd International Conference on Very Large Data Bases,
August 24-27, 1998, New York City, New York, USA, Ashish Gupta, Oded
Shmueli, and Jennifer Widom (Eds.). Morgan Kaufmann, 618–622.
http://www.vldb.org/conf/1998/p618.pdf

[51] Ian Sommerville. 2010. Software Engineering (Ninth Edition). Pearson.
[52] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2014. The

DStar Method for Effective Software Fault Localization. IEEE Trans. Re-
liability 63, 1 (2014), 290–308. https://doi.org/10.1109/TR.2013.2285319

[53] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.
2016. A Survey on Software Fault Localization. IEEE Trans. Software
Eng. 42, 8 (2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

[54] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. 2013.
A theoretical analysis of the risk evaluation formulas for spectrum-
based fault localization. ACM Trans. Softw. Eng. Methodol. 22, 4 (2013),
31:1–31:40. https://doi.org/10.1145/2522920.2522924

[55] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-
ing and understanding bugs in C compilers. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011,
Mary W. Hall and David A. Padua (Eds.). ACM, 283–294. https:
//doi.org/10.1145/1993498.1993532

[56] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. 2003.
Random Program Generator for Java JIT Compiler Test System. In 3rd
International Conference on Quality Software (QSIC 2003), 6-7 November
2003, Dallas, TX, USA. IEEE Computer Society, 20. https://doi.org/10.
1109/QSIC.2003.1319081

[57] Sergey V. Zelenov and Sophia A. Zelenova. 2005. Generation of Positive
and Negative Tests for Parsers. Programming and Computer Software
31, 6 (2005), 310–320. https://doi.org/10.1007/s11086-005-0040-6

28

https://doi.org/10.1109/ICSE.2012.6227211
https://doi.org/10.1145/2814270.2814304
https://doi.org/10.1145/2814270.2814304
http://eprints.maynoothuniversity.ie/6434/
https://doi.org/10.1109/52.56422
https://doi.org/10.1109/52.56422
https://doi.org/10.1002/spe.4380220303
https://doi.org/10.1002/spe.4380220303
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1016/0022-0000(82)90044-7
https://doi.org/10.1016/0022-0000(82)90044-7
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.1016/0304-3975(77)90016-0
https://doi.org/10.1145/953428.953435
https://doi.org/10.1145/953428.953435
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ASE.2003.1240292
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://www.squarefree.com/2009/03/16/css-grammar-fuzzer/
http://www.squarefree.com/2009/03/16/css-grammar-fuzzer/
https://doi.org/10.1007/978-3-540-73420-8_60
https://doi.org/10.1016/j.entcs.2008.03.045
https://doi.org/10.1016/j.entcs.2008.03.045
http://accent.compilertools.net/Amber.html
https://doi.org/10.1002/spe.812
https://doi.org/10.1002/spe.812
http://www.vldb.org/conf/1998/p618.pdf
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/QSIC.2003.1319081
https://doi.org/10.1109/QSIC.2003.1319081
https://doi.org/10.1007/s11086-005-0040-6

	Abstract
	1 Introduction
	2 Background and Notation
	3 Grammar Spectra
	4 Implementation
	4.1 Recursive-descent Parsers: ANTLR
	4.2 Table-driven LR Parsers: CUP

	5 Evaluation
	5.1 Fault Seeding
	5.2 Real-world Grammars
	5.3 Student Grammars

	6 Related Work
	7 Conclusions and Future Work
	References

