
An Interactive Feedback System for Grammar
Development (Tool Paper)

Chelsea Barraball
Stellenbosch University

Stellenbosch, South Africa
19768125@sun.ac.za

Moeketsi Raselimo
Stellenbosch University

Stellenbosch, South Africa
22374604@sun.ac.za

Bernd Fischer
Stellenbosch University

Stellenbosch, South Africa
bfischer@sun.ac.za

Abstract

We describe gtutr, an interactive feedback system designed
to assist students in developing context-free grammars and
corresponding ANTLR parsers. It intelligently controls stu-
dents’ access to a large test suite for the target language. After
each submission, gtutr analyzes any failing tests and uses
the Needleman-Wunsch sequence alignment algorithm over
the tests’ rule traces to identify and eliminate similar failing
tests. This reduces the redundancy in the feedback given to
the students and prevents them from being overloaded. gtutr
uses simple gamification to encourage independent problem
solving by students: it gives as little information as possible,
and students need to prompt the system for further details
such as failing tests similar to or different from already seen
tests, or even for hints about rules that are the most likely to
contain faults. It tracks the students’ information requests
and uses this to attenuate marks following an instructor-set
penalty schema. The system also visualizes test outcomes
over multiple submissions, helping students to keep track of
the effects of their changes as their grammar development
progresses.

CCSConcepts: · Software and its engineering→Parsers;
Syntax; Software testing and debugging; · Theory of com-

putation→ Grammars and context-free languages.

Keywords: Compiler courses, fault localization.

ACM Reference Format:

Chelsea Barraball, Moeketsi Raselimo, and Bernd Fischer. 2020.

An Interactive Feedback System for Grammar Development (Tool

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’20, November 16ś17, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00

https://doi.org/10.1145/3426425.3426935

Paper). In Proceedings of the 13th ACM SIGPLAN International Con-

ference on Software Language Engineering (SLE ’20), November 16ś

17, 2020, Virtual, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3426425.3426935

1 Introduction

Grammar development is a core element of many compiler
courses taught at universities: students are given an informal
description of the target language, for which they need to
formulate an appropriate context-free grammar, and then
implement a corresponding parser, often using a tool such
as ANTLR. Students are often also given some examples to
complement and clarify the language description, but thor-
oughly testing the correctness of the developed grammars
and parsers requires large and varied test suites that can,
for example, be automatically generated from the instruc-
tor’s hidden grammar [7, 12]. However, given the size and
scope of such test suites, the potential number of failing tests
can be vast and overwhelm the students, and the success-
ful development of a grammar may rely predominantly on
their ability to sift through the error messages produced by
the failing tests to trace the potential faults back to their
grammars’ rules. This can be a very arduous and frustrating
process.
We have developed the gtutr tool to make this process

easier. gtutr allows students to submit grammars developed
for the ANTLR parser generator [9] and then runs a predeter-
mined set of test cases against that grammar. The tool filters
the feedback given to the students and gives additional hints
that guide students towards the locations in the grammar
that most likely contain the faults. gtutr uses the Needleman-
Wunsch sequence alignment algorithm to classify the test
cases based on their rules traces, in order to identify and
eliminate tests that are caused by similar faults in the gram-
mar. This removes redundancy and reduces the amount of
feedback needed to convey the same information to the stu-
dents. A spectrum-based fault localization [11] approach is
then used to pinpoint the locations in the grammar that most
likely contain these faults. The tool gives information only
on request and keeps track of students’ requests. Instructors
can set a penalty for each type of request, and the tool uses a
penalty meter to entice students to minimize their requests.

101

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3426425.3426935
https://doi.org/10.1145/3426425.3426935
https://doi.org/10.1145/3426425.3426935
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3426425.3426935&domain=pdf&date_stamp=2020-11-15

SLE ’20, November 16ś17, 2020, Virtual, USA Chelsea Barraball, Moeketsi Raselimo, and Bernd Fischer

2 Preliminaries

BasicNotation. We follow the notation from [2, Sect. 4.2.2].
A grammar is a four-tuple𝐺 = (𝑁,𝑇 , 𝑃, 𝑆)with non-terminals
𝑁 , terminals 𝑇 , 𝑁 ∩𝑇 = ∅, productions 𝑃 ⊂ 𝑁 × (𝑁 ∪𝑇)∗,
and start symbol 𝑆 ∈ 𝑁 . We use 𝛼𝐴𝛽 ⇒ 𝛼𝛾𝛽 to denote that
𝛼𝐴𝛽 produces 𝛼𝛾𝛽 by application of the rule 𝐴 → 𝛾 ∈ 𝑃 and
use ⇒∗ for the reflexive-transitive closure.

The yield of a sentential form 𝛼 is the set of all words that
can be derived from it, i.e., yield(𝛼) = {𝑤 ∈ 𝑇 ∗ | 𝛼 ⇒∗ 𝑤}.
The language 𝐿(𝐺) generated by a grammar𝐺 is the yield of
its start symbol, i.e., 𝐿(𝐺) = {𝑤 ∈ 𝑇 ∗ | 𝑆 ⇒∗ 𝑤}.

Test Suites. A test suite consists of a list of test inputs for
the unit under test (UUT) and corresponding expected out-
puts (which can also be a specific system error, e.g., for illegal
inputs). The UUT passes a test if it produces the expected
output for the given input and fails otherwise.
In our case, the UUT is a parser (more specifically, a rec-

ognizer) derived by ANTLR [9, 10] from a student grammar
𝐺 , a test input is a word 𝑥 and the expected output is either
accept (if the test is positive, i.e., 𝑥 ∈ 𝐿(𝐺 ′) for the target
grammar 𝐺 ′) or reject (if the test is negative, i.e., 𝑥 ∉ 𝐿(𝐺 ′)).
Note that 𝐺 and 𝐺 ′ are typically different because 𝐺 ′ is not
in ANTLR format or remains the instructor’s secret. Note
also that a pass-verdict for a negative test case can be defined
in two different ways, either by simply requiring that the
UUT rejects the input, or by requiring that it identifies the
expected syntax error. The latter definition leads to more
precise feedback.

Grammar-Based Test Suite Construction. gtutr works
over a test suite for the target language that must be provided
by the instructor as part of the set-up procedure. The test
suite needs to have adequate coverage of the target grammar
(see [7] for a definition of grammar coverage) and should
ideally contain both positive and negative test cases to test
the student grammars thoroughly, and to allow the fault lo-
calization algorithm to operate optimally. The test suite must
also be large enough and simultaneously contain enough
redundancy and enough variance, in the sense that the clas-
sification algorithm must be able to identify enoughÐbut not
allÐdifferent tests as similar by, so that tool can show more
tests either failing in a similar way or failing in a different
way, depending on the user’s request.

Test suites that fit these criteria can be constructed man-
ually by the instructor, or can be auto-generated. We use
positive test suites that satisfy several grammar coverage
criteria [7], using a generic cover algorithm [5], and negative
test suites that are constructed using algorithms proposed
in [12].

Spectrum-Based Fault Localization for Grammars.

Raselimo and Fischer [11] describe a method aimed at identi-
fying faulty rules in a context-free grammar. It takes as input

a test suite and a parser’s implementation of a grammar un-
der test, instruments the parser to collect grammar spectra
(which are sets of rules applied during paring) and gives an
output of a ranked list of suspicious rules.
Grammar spectra for individual tests are correlated with

each test outcome and aggregated into four basic counts
for each grammar rule 𝑟 : 𝑒𝑝 (𝑟) resp. 𝑒 𝑓 (𝑟) are the number
of passed resp. failed tests in which 𝑟 is executed, while
𝑛𝑝 (𝑟) resp. 𝑛𝑓 (𝑟) are the number of passed resp. failed tests
in which 𝑟 is not executed. A suspiciousness score is then
computed and assigned to each rule 𝑟 via defining some rank-
ing metrics using these basic counts. Higher scores indicate
higher bug likelihood. This method has been adapted with
minimal changes from software fault localization techniques,
i.e., by replacing the notion of ‘executed’ program statements
with that of ‘applied’ grammar rules. Wong et al. [13] give a
good overview of software fault localization techniques.

3 Test Case Classification with the
Needleman-Wunsch Algorithm

In a large test suite, there may be many test cases that are
similar to each other. Merely increasing the number of failing
test cases shown to a student will therefore not necessarily
give them additional information to help them find a fault in
their grammar, e.g., if enough similar test cases have already
been shown. On the other hand, presenting only different

failing tests is not necessarily the right approach either, be-
cause students may need different similar tests to form and
confirm (or disprove) a hypothesis about the fault location.
We therefore need to find out which test cases are simi-

lar, and indeed to quantify this similarity, so that students
can decide how many similar test cases to be shown, and
so to maximise the value of the feedback. To this end, gtutr
classifies test cases using a modified version of a global se-
quence alignment algorithm called the Needleman-Wunsch

[4] algorithm.
We define a test’s rule trace as the sequence of rules that

are applied when a test is parsed. When a test is accepted by
the parser, its rule trace consists of the entire sequence of
rules in the order in which they were applied (which for an
LL-parser means the order in which the parse functions were
called). When a test is not accepted by the parser, the test’s
rule trace consists of all the rules that have been applied to
the left of the error position. Whether a test case is positive
or negative is irrelevant in this computation, as each trace is
only dependent on whether a test case is accepted or rejected
by the parser. Classification on these traces is done over the
entire test suite, and decisions on which test cases must be
displayed to the student are made later.
We can see in Figure 1 two possible rule traces for two

different test cases for a toy grammar as seen in Figure 4.
Both tests entered first at rule program and entered last at
rule type, at which point an error was produced. However,

102

An Interactive Feedback System for Grammar Development (Tool Paper) SLE ’20, November 16ś17, 2020, Virtual, USA

program body vardecl varseq type

program funcdef - varseq type

Figure 1. Possible alignment of two rule traces by the
Needleman-Wunsch algorithm for a toy language.

their rule traces are not identical. To quantify the similarity
between different rule traces, the Needleman-Wunsch algo-
rithm is then used on these sequences. This is a dynamic
programming algorithm that quantifies the goodness of the
alignment over the entire length of two sequences. It consists
of three steps:

1. Initializing a score matrix.
2. Calculating scores and filling in a trace-back matrix.
3. Calculating the alignment from the trace-back matrix.

Given two sequences, a score must be associated with each
possible alignment between them. The score of an alignment
consists of a sum of scores for each corresponding rule in
the aligned sequence. Matching rules increment the score,
mismatching rules decrement the score, and gaps in the
alignment (i.e., locations in the alignment where there is no
rule for one of the sequences) penalize the score heavily. For
example, in Figure 1, the first rules will match, the second
will be a mismatch, and the third will be a gap.

Given this scoring scheme, the score matrix 𝐶 can be ini-
tialized. For two sequences 𝑎 = 𝑎1𝑎2...𝑎𝑛 and 𝑏 = 𝑏1𝑏2...𝑏𝑚 ,
the score matrix 𝐶 is an 𝑛 ×𝑚 matrix where any cell 𝐶 (𝑖, 𝑗)
is the maximum value of

𝐶 (𝑖, 𝑗) =𝑚𝑎𝑥





𝐶 (𝑖 − 1, 𝑗 − 1) + 𝑆 (𝑎𝑖 , 𝑏 𝑗)

𝐶 (𝑖 − 1, 𝑗) + 𝑔

𝐶 (𝑖, 𝑗 − 1) + 𝑔

where𝐶 (𝑖, 𝑗) is the score at position 𝑖 in sequence 𝑎 and posi-
tion 𝑗 in the sequence 𝑏. 𝑆 (𝑎𝑖 , 𝑏 𝑗) is the score for aligning the
characters at positions 𝑖 and 𝑗 . 𝑔 is the gap penalty. In other
words, the value of a cell𝐶 (𝑖, 𝑗) is only dependant on the val-
ues of the adjacent northwest diagonal, up and left cells. As
the score matrix is created, the trace-back matrix is filled up
with diag, up or left values. After the matrices have been
filled up, the trace-back matrix can be used to deduce the
optimal alignment by starting at the bottom rightmost ele-
ment and traversing according to the values in the array. The
value diag in position (𝑖, 𝑗) in the trace-back matrix means
that the letters 𝑎𝑖 and 𝑏𝑖 are aligned. left means that a gap
was introduced in the left sequence, and right means that a
gap was introduced in the right sequence. The adjusted se-
quences are built up from the values in the trace-back matrix,
and the final alignment score is calculated.
Tests that induce rule traces with high alignment scores

are classified together, while those that do not have suffi-
ciently high alignment scores with any other sequences form
new error classes. In this way, test cases of a grammar can
be classified according to their rule traces.

Note that in gtutr, the alignment algorithm classifies the
test cases according to their outcomes in the student’s latest
submission. Therefore classifications will change over time
as the student makes changes to their submissions.

4 Tool Design

Overall Approach. gtutr was designed as an interactive
educational tool for use by both students and instructors. The
main design goal was to guide students towards improving
their grammars; it therefore gives out less information than
the student might want, to encourage and foster independent
problem-solving.

The classification described in the previous section assists
the tool in deciding onwhich test cases to display, but the tool
also applies other metrics to make the feedback as diverse as
possible. It attempts to include both positive and negative test
cases if possible, as well as failing and passing test cases from
the same class. Another feature is a penalty system that aims
to discourage students from “teasingž too much information
out of the system. For each action taken by a student that
requests the disclosure of additional information, the system
assigns a penalty value. These values represent percentages
of a penalty meter that, when filled to 100%, subtracts a
predetermined amount of marks from the student’s score.
There are three main views for student interaction, which
we will describe below.

Main Student Dashboard. Students can upload their
grammars to gtutr, which will fetch and run untested gram-
mars using the provided test suite. When a student logs in,
they can select a grammar project and are then redirected to
the ‘Submissions’ page. This view is shown in Figure 2.
The circular graph on the left displays the current mark

for a student. It will also display the total penalties in red if
the student has any. Below this is the penalty meter, which
displays the current running total of penalties as well as the
amount that will be subtracted from the total score once the
meter is filled.
The table in the middle of the page displays a student’s

submissions, both past and in progress. The total number
of failed and passed test cases are shown, as well as the
time of submission and the improvement from the previous
submission. Clicking the ‘New Submission’ button will bring
up a window where a grammar file can be selected and
uploaded. The top right corner contains links to the other
pages that the student has access to.

Detailed Feedback View. Clicking on ‘Results’ will redi-
rect the student to the detailed feedback made available by
the system, as seen in Figure 3.

The feedback is presented as a small table, where each row
displays the test case’s name (which could be mnemonic to
give more hints) and the test’s status in each of the student’s
submissions. Clicking on the test’s name will display its

103

SLE ’20, November 16ś17, 2020, Virtual, USA Chelsea Barraball, Moeketsi Raselimo, and Bernd Fischer

Figure 2. Student dashboard showing submission history.

Figure 3. Student result view. Each row in the table repre-
sents a test case and its performance over a student’s sub-
missions, which span the columns. Green blocks are passing
test cases, red blocks are failing test cases, and orange blocks
denote an ‘unknown’ status that appears when a student has
requested to view a previously unseen test case. For such
a test case, clicking on its unknown blocks can reveal the
actual status. Clicking on the ‘More’ and ‘New Class’ buttons
will load a new test case from an already displayed class or
an unseen class, respectively.

contents, and clicking on the green (passed) or red (failed)
blocks will reveal the error message associated with the test
case for that specific submission. This can also be seen in

Figure 3: the last two rows of the table represent the content
and error message respectively for the test case in row 6.
Initially, students are only presented with both a small

number of error classes and a small number of test cases per
class. This is designed to encourage the student to attempt to
solve the problem with limited feedback. If a student wants
more feedback, they can elect to be shown more test cases
in a specific class by clicking the ‘More’ button, or an ad-
ditional previously unseen class altogether with the ‘New
Class’ button. If a student has submitted multiple grammars
to the system and requests to see a previously unseen test
case, the status of the test case will only be shown for the
latest submission, and the status for each other submission
remains unknown to prevent feedback from being leaked, as
represented by the orange blocks with question marks in Fig-
ure 3. Students can elect to uncover the status of a test case
from a previous submission if they wish by clicking on the
block. However, this may carry an extra penalty, depending
on the instructor’s penalty scheme.

All of these additional features are explained with tooltips
and each action that incurs a penalty will have a tooltip
disclosing the exact amount that will be added to the penalty
meter, so that students are aware of the cost of each action.

Localization View. When a student clicks on the ‘Gram-
mars’ link, they will be redirected to a page as can be seen
in Figure 4. This is where students can view the most sus-
picious rules of their grammars. When pressing the ‘Find
faulty rules’ button for the first time, the tool will give them
the top most suspicious rules in no particular order. Only the
Top-5 rules will be shown, as long as they have a non-zero
suspiciousness score, and are therefore seen as suspicious by
the localization algorithm. This can be seen on the left-hand
side of Figure 4, where only two rules have been flagged as
suspicious.

104

An Interactive Feedback System for Grammar Development (Tool Paper) SLE ’20, November 16ś17, 2020, Virtual, USA

Figure 4. Part of the page seen by the student when they want to view their grammars and the possible faulty rules. Suspicious
rules have been highlighted for each grammar. Initially each suspicious rule is shown as equally suspicious. Clicking on ‘Find
faulty rules’ will start to reveal the ranks of the rules, with the redness of the rule indicating its suspiciousness.

With each successive request to view the faulty rules, the
tool will start to reveal the order of their suspiciousness,
starting with the least suspicious rule, as seen on the right-
hand side of Figure 4. The darker the red color, the higher
ranked a rule is. The rank for a rule can also be seen by
hovering over its production. As an example, in Figure 4,
the faulty rule in the submission on the left is funcdef. In
the right-hand submission, the faulty rules are varseq and
output.

Instructor View. The instructor is able to create new
grammar projects, which includes supplying the test suite as
well as calibrating the penalty values associated with each
penalizable action. The test cases are configured by the in-
structor to be positive or negative, and they can be hidden
from the students’ result section if the instructor does not
want to make all the test cases available to be seen. The in-
structor also has the ability to view statistics on the students,
their submissions as well as the test cases.

5 Tool Implementation

gtutr is implemented in Java as a Java Spring Boot [1] ap-
plication and uses the Spring MVC framework for the web
interface. The database storing the submissions, grammar
information and results are hosted on Amazon Web Services

(AWS). The server runs two components simultaneously,
that is the calculation and extraction of the feedback and
its display in the web application, and the execution of the
ANTLR components in the background.

ANTLR Parser Execution. gtutr uses the ANTLR v4 li-
brary [9] for Java, which includes the antlr4-runtime and
antlr4Maven dependencies. The Java library allows man-
ual invocation of a parser as well as the automatic generation
of a tree walker that can be used to visit the nodes of the
tree that was generated by the parser. The application uses
the tree walkers to extract the rule traces of the test cases
for classification and fault localization purposes.

The ANTLR-parser invocation requires the presence of the
parser, lexer and other related classes in the tool directory.
These files are usually automatically built by Maven in the
compilation stage of its life-cycle, but this requires anANTLR
grammar file to be present in the project. Since gtutr fetches
the grammar files from the database and compiles them
continuously, this is not ideal. A dynamic class loader and
compiler was therefore integrated with the ANTLR code to
generate the needed files on the fly using only the student’s
grammar submission fetched from the database.

The part of the application responsible for the generation
of a student’s parser and its subsequent testing is contained

105

SLE ’20, November 16ś17, 2020, Virtual, USA Chelsea Barraball, Moeketsi Raselimo, and Bernd Fischer

within a thread that monitors the database for any new sub-
missions. The tool fetches the new submission from the
database, generates a parser, and fetches the test cases from
the database, running through them each individually, while
keeping track of failures, error messages, and rule stacks. All
this information is then again saved to the database where it
can be used to display feedback to the student and instructor.

Note that the details of ANTLR’s LL(*) parsing algorithm
[10] are actually irrelevant for gtutr. We only need to be able
to extract the rule traces and the accept/reject verdict from
ANTLR’s execution.

Web Interface. The web application makes use of Java
Server Pages (JSP). JSP is a collection of technologies that
assists with the creation of dynamic web pages implemented
(in this case) in HTML. JSP is similar to PHP but uses Java as
a programming language, which makes integration with the
main application easier. The application also makes use of
Asynchronous JavaScript and XML (AJAX) to dynamically
update the web page as needed.

CAS. To restrict access to the web application to members
of staff and students only, we integrated a central authenti-
cation service (CAS) using Spring Security, which allowed
us to use Stellenbosch University’s single sign-on service to
manage access to the application and the data.

JPA. The application uses the Java Persistence API (JPA)
[3], which is a Java specification for accessing, persisting and
managing data between Java object/classes and a relational
database. JPA is used as it provides database abstraction and
the automatic handling of data types. Queries do not need
to be written by the user, and JPA provides performance
optimizations that speed up typically performance reducing
database queries.

6 Conclusion

gtutr is an interactive feedback system that was designed
to assist students in developing context-free grammars and
their corresponding parsers. It analyzes failing tests and
uses the Needleman-Wunsch sequence alignment algorithm
over the tests’ rule traces to identify and eliminate similar
failing tests. The tool then provides highly interactive and
visually stimulating feedback to the student in the form of
test outcomes and grammar fault localization as well as a
point and penalty system.
We have successfully trialled gtutr with a small group of

students enrolled for a fourth year SLE course at Stellenbosch
University. The students generally found gtutr useful, and
made consistent use of it; on average, each student submitted
about six grammar versions. Surprisingly, the students made
little use of the fault localization capability, despite the fact
that we did not apply the incurred penalties to their actual
marks.

gtutr has been designed to use ANTLR and its components,
but it can be adapted to work with other parser-generator
systems. This requires a modified wrapper component to
call the parser generator and the generated parsers, similar
to the way described for ANTLR in Section 5. The notion of
rule traces and their computations must also be adapted for
such modifications. The approach described by Raselimo and
Fischer [11] for rule spectra extraction from LR-parsers could
easily be modified for rule traces. Using gtutr with manually
implemented parsers may, however, not be so easy, because
the rule trace extraction becomes more unsystematic.
In future work, we plan to increase the gamification as-

pects of the system, e.g., by a common leader-board that
shows the results and penalties across all students. Parser vi-
sualization [6, 8] techniques are orthogonal to the approach
we have taken with gtutr, but it may also be possible to
integrate some ideas into gtutr.

Acknowledgments. This work is funded in part by the NRF
under Grant 113364.

References
[1] [n.d.]. Spring Source Code. https://github.com/spring-projects/spring-

framework.

[2] Alfred V. Aho, Monica S. Lam Ravi Sethi, and Jeffrey D. Ullman. 2006.

Compilers: Principles, Techniques, and Tools (Second Edition). Addison-

Wesley.

[3] Linda DeMichiel and Lukas Jungmann. [n.d.]. JPA source code. https:

//github.com/eclipse/javax.persistence.

[4] Zhihua Du and Feng Lin. 2004. Improvement of the Needleman-

Wunsch Algorithm. In Rough Sets and Current Trends in Computing,

Shusaku Tsumoto, Roman Słowiński, Jan Komorowski, and Jerzy W.

Grzymała-Busse (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

792ś797.

[5] Bernd Fischer, Ralf Lämmel, and Vadim Zaytsev. 2011. Comparison

of Context-Free Grammars Based on Parsing Generated Test Data. In

Software Language Engineering - 4th International Conference, SLE 2011,

Braga, Portugal, July 3-4, 2011, Revised Selected Papers (Lecture Notes

in Computer Science, Vol. 6940), Anthony M. Sloane and Uwe Aßmann

(Eds.). Springer, 324ś343. https://doi.org/10.1007/978-3-642-28830-

2_18

[6] Alan Kaplan and Denise Shoup. 2000. CUPV - a visualization tool for

generated parsers. In Proceedings of the 31st SIGCSE Technical Sympo-

sium on Computer Science Education, 2000, Austin, Texas, USA, March

7-12, 2000, Lillian (Boots) Cassel, Nell B. Dale, Henry MacKay Walker,

and Susan M. Haller (Eds.). ACM, 11ś15. https://doi.org/10.1145/

330908.331801

[7] Ralf Lämmel. 2001. Grammar Testing. In Fundamental Approaches

to Software Engineering, 4th International Conference, FASE 2001 Held

as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings (Lec-

ture Notes in Computer Science, Vol. 2029), Heinrich Hußmann (Ed.).

Springer, 201ś216. https://doi.org/10.1007/3-540-45314-8_15

[8] Marjan Mernik and Viljem Zumer. 2003. An educational tool for

teaching compiler construction. IEEE Trans. Educ. 46, 1 (2003), 61ś68.

https://doi.org/10.1109/TE.2002.808277

[9] Terence Parr. [n.d.]. ANTLR v4 source code. https://github.com/antlr/

antlr4.

[10] Terence Parr and Kathleen Fisher. 2011. LL(*): the foundation of the

ANTLR parser generator. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI

106

https://github.com/spring-projects/spring-framework
https://github.com/spring-projects/spring-framework
https://github.com/eclipse/javax.persistence
https://github.com/eclipse/javax.persistence
https://doi.org/10.1007/978-3-642-28830-2_18
https://doi.org/10.1007/978-3-642-28830-2_18
https://doi.org/10.1145/330908.331801
https://doi.org/10.1145/330908.331801
https://doi.org/10.1007/3-540-45314-8_15
https://doi.org/10.1109/TE.2002.808277
https://github.com/antlr/antlr4
https://github.com/antlr/antlr4

An Interactive Feedback System for Grammar Development (Tool Paper) SLE ’20, November 16ś17, 2020, Virtual, USA

2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A.

Padua (Eds.). ACM, 425ś436. https://doi.org/10.1145/1993498.1993548

[11] Moeketsi Raselimo and Bernd Fischer. 2019. Spectrum-based fault

localization for context-free grammars. In Proceedings of the 12th ACM

SIGPLAN International Conference on Software Language Engineering,

SLE 2019, Athens, Greece, October 20-22, 2019, Oscar Nierstrasz, Jeff

Gray, and Bruno C. d. S. Oliveira (Eds.). ACM, 15ś28. https://doi.org/

10.1145/3357766.3359538

[12] Moeketsi Raselimo, Jan Taljaard, and Bernd Fischer. 2019. Breaking

parsers: mutation-based generation of programs with guaranteed syn-

tax errors. In Proceedings of the 12th ACM SIGPLAN International Con-

ference on Software Language Engineering, SLE 2019, Athens, Greece, Oc-

tober 20-22, 2019, Oscar Nierstrasz, Jeff Gray, and Bruno C. d. S. Oliveira

(Eds.). ACM, 83ś87. https://doi.org/10.1145/3357766.3359542

[13] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.

2016. A Survey on Software Fault Localization. IEEE Trans. Software

Eng. 42, 8 (2016), 707ś740. https://doi.org/10.1109/TSE.2016.2521368

107

https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3357766.3359542
https://doi.org/10.1109/TSE.2016.2521368

	Abstract
	1 Introduction
	2 Preliminaries
	3 Test Case Classification with the Needleman-Wunsch Algorithm
	4 Tool Design
	5 Tool Implementation
	6 Conclusion
	References

