Check for
Updates

Automatic Grammar Repair

Moeketsi Raselimo
Stellenbosch University
Stellenbosch, South Africa
22374604@sun.ac.za

Abstract

We describe the first approach to automatically repair bugs
in context-free grammars: given a grammar that fails some
tests in a given test suite, we iteratively and gradually trans-
form the grammar until it passes all tests. Our core idea
is to build on spectrum-based fault localization to identify
promising repair sites (i.e., specific positions in rules), and to
apply grammar patches at these sites whenever they satisfy
explicitly formulated pre-conditions necessary to potentially
improve the grammar.

We have implemented this approach in the gfixr system,
and successfully used it to fix grammars students submitted
as homeworks in a compiler engineering course, and to map
one Pascal dialect grammar against another dialect. gfixr can
be configured to explore the repair space in different ways,
and can also take advantage of counterexamples to enable
restriction patches that make the grammar less permissive.

CCS Concepts: « Software and its engineering — Parsers;
Syntax; Software testing and debugging; « Theory of com-
putation — Grammars and context-free languages.

Keywords: Program repair, Fault localization.

ACM Reference Format:

Moeketsi Raselimo and Bernd Fischer. 2021. Automatic Grammar
Repair. In Proceedings of the 14th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE °21), October 17—
18, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3486608.3486910

1 Introduction

Grammars are software, and can contain bugs like any other
software. This is true even for well-curated grammars. Lam-
mel and Verhoef [32] found “more errors than one would
expect from a language reference manual” when analyzing
COBOL, and Zaytsev [68] shows errors and inconsistencies
in the language specifications of both Java and C#. Grammar
testing [31] can demonstrate the presence of such bugs in

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SLE 21, October 17-18, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9111-5/21/10.
https://doi.org/10.1145/3486608.3486910

126

Bernd Fischer
Stellenbosch University
Stellenbosch, South Africa
bfischer@sun.ac.za

grammars and grammar fault localization [50] can identify
rules that are likely to contain bugs, but neither of the two
techniques can automatically repair bugs and fix grammars.

Manual grammar repair is tedious because developers
need to track information about syntax errors back to the
grammar, without much feedback from the parser: since the
parser assumes that the grammar is correct and the input
wrong, its error messages are not necessarily useful for the
repair process.

An automatic grammar repair can thus be useful whenever
a given grammar needs to be patched to fit a given test suite
for the intended target language, as it eliminates the manual
repair efforts. However, automation also enables more inter-
esting application scenarios in various areas, for example
(i) teaching: patches can be integrated into an automated
interactive feedback system [5] to help students developing
a grammar; (ii) grammar maintenance: patches can be used
to automate the adaptation of a base grammar to capture a
dialect from examples [48]; (iii) grammar migration: patches
can fix errors introduced by migration of a grammar from
one formalism (e.g., LR with precedences) into another one
with different capabilities (e.g., pure LL); (iv) grammar infer-
ence: patches can replace the blind search in the inner loop
of genetic grammar learning algorithm [8, 48].

In this paper, we describe the first approach to automati-
cally repair bugs in context-free grammars: given a grammar
that fails some tests in a given test suite, we iteratively and
gradually transform the grammar until it passes all tests.

Our approach is based on the “find-and-fix” cycle typically
used in manual repair. As an example, consider a situation
where we are trying to develop a CUP [25] grammar specifi-
cation against a small test suite TSz, with passing tests to
complement an informal description of the target language
Joy. Assume that our grammar G;Uy is similar to the cor-
rect version G, shown in Fig. 1 (See Appendix A), with the
exception of the last two rules that have the following form:

name — id|id[simple 1 | id (name namelist)
namelist — namelist , name | €

Assume further that we are faced with the following three
failing tests in TSv,:

program a begin a(@) end

program a begin a(@, @) end

program a begin a(@, 0, @) end
In all three cases, CUP’s syntax error messages are indeed
not useful—in particular, they only confirm the error location
and token, but give no further information:

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6859-7833
https://orcid.org/0000-0002-1815-218X
https://doi.org/10.1145/3486608.3486910
https://doi.org/10.1145/3486608.3486910
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3486608.3486910&domain=pdf&date_stamp=2021-11-22

SLE °21, October 17-18, 2021, Chicago, IL, USA

Error in line 1, column 19: Syntax error.

Found NUM(@), expected token classes are [].
We therefore need to trace the failing tests back to our gram-
mar, to identify the faulty rules and then the precise fault
positions within these; in this case, this is relatively straight-
forward because all three tests fail right after the token se-
quence id (, and there is only one rule in Gfm where this
sequence occurs, i.e.,

name— id | id [simple 1 | id (® name namelist)

Here, we use the e-symbol to indicate the suspected error
position, i.e., the error is at name on the right-hand side of
the third rule for name.

Based on this (manual) fault localization, we can now try
to repair the fault and fix the grammar. We first try to patch
the faulty rule, by applying a small, localized transformation
rather than to refactor the entire grammar. Common patches
include deleting, inserting, or substituting symbols, and we
decide to substitute name by num, to ensure that the bad
token num is accepted. Note that there are other patches that
also ensure this (e.g., inserting num or substituting name by
expr) but this is the least intrusive patch.

We then validate this patch, i.e., generate a CUP parser
from the patched grammar and run it over the test suite.
Here, the patch turns out to be a partial repair only: it does
not introduce any new test failures but does not resolve all
previous failures, and we are left with two failing test cases:

program a begin a(@, @) end

program a begin a(@, @, @) end
In both cases, we get the same syntax error messages as
before, with the new error locations showing that we indeed
made some progress on these two test as well:

Error in line 1, column 22: Syntax error.

Found NUM(@), expected token classes are [].
This indicates that the patched grammar still contains an-
other occurrence of name that needs to substituted, i.e.,

namelist — namelist , ® name | €

Patching the first namelist-rule accordingly resolves the two
test failures. Both patches together thus constitute a full
repair that fixes the grammar.

Our first contribution in this paper is the automation of
this manual find-and-fix cycle, which involves the following:

o localization: we use an improved variant [51] of spec-
trum-based fault localization [50] for CFGs to identify
promising repair sites (i.e., specific positions in rules);

e transformation: we apply small-scale grammar trans-
formations or patches at these sites whenever they
satisfy explicitly formulated pre-conditions (see Sec-
tion 4 to Section 6 for details) that are necessary to
potentially improve the grammar;

e control: we alternate between localization and trans-
formation, as they reinforce each other and iterate

127

Moeketsi Raselimo and Bernd Fischer

until we find a fix. We use a priority queue to keep
improving the most promising candidate grammars.

Our approach is informed by two basic principles, the compe-
tent programmer hypothesis (“most programmers are compe-
tent enough to create correct or almost correct source code”)
[10] and Occam’s razor (“entities should not be multiplied
without necessity”). In our context, the former means that
we can reasonably hope to construct G’ from G through a se-
quence of patches, while the latter means that the repair uses
the vocabulary and the structure of the original grammar,
and minimizes the number of applied patches.

We have implemented, as a second contribution, this ap-
proach in the gfixr system, which takes as input a CFG G
in CUP-format and a suite of positive and negative tests
for the intended language £, and automatically constructs
a “similar” CFG G’ that accepts all positive tests and re-
jects all negative tests. We have successfully used gfixr to fix
grammars students submitted as homeworks in a compiler
engineering course, and to map one Pascal dialect grammar
against another dialect. Given a variant of the example gram-
mar shown in Fig. 1 that uses the two faulty rules above,
and a test suite TS, satisfying the CDRC coverage [31] for
the target language 7oy, gfixr finds the same full repair in
less than a minute. gfixr can be configured to explore the
repair space differently, preferring the most general repairs
instead of the most specific ones as above; it then produces
the alternative repair.

name — ... | id (expr namelist)
namelist — namelist , expr | €

Moreover, gfixr can also take advantage of negative tests:
with only seven counterexamples added to the test suite, gfixr
can fix three different quirks in the grammar which allows
procedure calls without argument lists, call expressions as
Ivalues, and indexing expressions as statements.

2 Preliminaries
2.1 Context-Free Grammars

Grammar notation. A context-free grammar (CFG) is a
four-tuple G = (N,T,P,S) with NNT =0,V = NUT,
Pc NxV* and S € N. We call S the start symbol and use
A, B,C, ... for non-terminals N, a,b,c, ... for terminals T,
X, Y, Z for grammar symbols V, p, q, r for productions or rules
P, w, x,y, z for words over T*, and a, f3,, . . . for phrases over
V*, with € for the empty string and || for the length of a.
We write A — y forarule (A,y) € Pand P4y = {A — y € P}
for the rules for A.

Derivations. We use adAffl = ayf to denote that aAf
produces ayf by application of the rule A — y € P and
use =" for its reflexive-transitive closure. We write =y if
A — y € R C P. We call a phrase « a sentential form if
S =" a. The yield of « is the set of all words that can be
derived from it, i.e., yield(a) = {w € T* | « =* w}. The

Automatic Grammar Repair

language L(G) generated by a grammar G is the yield of its
start symbol, ie, L(G) ={w e T* | S$ =" w}.

a is nullable if € € yield(a). We define the first (resp.
last) set of a phrase « as first(a) = {a | &« = af} (resp.
last(a) = {a | @ =" pa}), and the precede (resp. follow)
set of a symbol X precede(X) = {a | S =* aaXp} (resp.
follow(X) = {a | S =" aXap}).

We call u a viable k-prefix of a word w = uo if |u| < k and
S =" uv’ forav’ € T*, and denote this by u <; w. We call a
viable k-prefix u <; w maximal if there is no a € T such that
ua <1 w. Hence, w <),,| wiff w € L(G) and, conversely, if
the maximal viable prefix u has length k < |w| then w has a
syntax error at position k + 1. We denote the the maximal
viable prefix of w by prefix(w).

Items. An itemis arule A — «a e 8 with a designated
position (denoted by e) on its right-hand side. We use P*® to
denote the set of all items, i.e., all rules with all designated
positions. We often use items and rules interchangeably, but
where necessary we use p° to distinguish an item from the
underlying rule p.

We define as the left (resp. right) set of an item the sets of
symbols that can occur immediately to the left (resp. right)
of the designated position [52]. Hence, the left set of an item
A — «a e f contains all tokens that can occur at the end of
a and, if « is nullable, all tokens that in other contexts can
occur left of A.

last(a) U precede(A) if @ nullable

left(A > aef) = {

last(a) otherwise
right(A —> a e f) = first(p) U follow(A) if f nul}able
first(f) otherwise

2.2 Test Suites for CFGs

A test suite consists of a list of inputs for a system under test
(SUT) and corresponding expected outputs; the SUT passes
a test if it produces the expected output for the given input.
In our case, test inputs are words w € T*, and the expected
outputs are either “accept” (if the test is positive, i.e, w € L)
or “reject” (if the test is negative, i.e., w ¢ L).

More specifically, a test suite for a target language L is a
pair TS ; = (TS*, TS™) of positive tests TSt C £ and negative
tests TS~ with TS™ N £ = (. By abuse of notation, we also
use TS, for the union TS* U TS~ of both sets. We require
TS r to be finite and consistent, i.e., TS* N TS~ = 0. A test
w is called a true positive if w € TSt N L, false positive if
w € TS N L, true negative if w € TS~ \ L, and false negative
ifwe TST\ L.

Since we are using test suites as specification data for the
repair, it is important to ensure that they adequately reflect
the syntactic structure of the target language. More specifi-
cally, for most examples and experiments, we therefore use
test suites that are automatically generated from the EBNF
version of the respective target grammar to satisfy CDRC

128

SLE °21, October 17-18, 2021, Chicago, IL, USA

[31] coverage. For the running example, the CDRC test suite
TS5y contains 69 positive tests. For patch validation, we also
created a test suite that contains all valid bigrams.

2.3 Spectrum-Based Fault Localization in CFGs

Software fault localization [1, 23, 43, 53, 65] techniques at-
tempt to identify likely bug locations in software. Spectrum-
based fault localization techniques record execution informa-
tion called a program spectrum for a program when running
over a given test suite. From the spectrum, they then com-
pute suspiciousness scores for each program element (e.g.,
method or statement), which can be interpreted as the likeli-
hood that that element contains a fault. Different formulas
(e.g., Tarantula [23], Ochiai [46], or Jaccard [7]) have been
proposed for the score computation but they all combine
in different ways the numbers of passed resp. failed tests in
which each program element is executed resp. not executed.

Spectrum-based fault localization has also been used to
identify the rules that cause a parser to accept words outside
(resp. not accept words within) the expected language [50].
We extended this approach to localize faults at the level of
individual symbols in rules [51], which reduces the number
of possible fault locations compared to a rule-level localiza-
tion, where we would need to iterate over all positions in
the identified rules. The computation of the item spectra re-
lies on an instrumented parser to record information as the
grammar rules are exercised for a given test case, but the
remaining steps of the approach remain unchanged.

We have experimented with different variants of item
spectra, but for the repair we can consider localization as
a black box, and model a spectrum as the union of two dif-
ferent relations ~,, ~x C P* X TS s between items and tests
that encode test execution and test outcome. We then define
pass(p®) = {w € TSy | p* ~, w} and fail(p®) = {w €
TSy | p* ~x w} as the sets of passing and failing tests ex-
ecuting p up to the designated position, respectively. We
can then define the usual counts Nyass = | U, pass(p®)l,
ep(p®) = Ipass(p®)|, and np(p®) = Npass — ep(p°), and cor-
respondingly, Npil = | U, fail(p®)|, ef (p°) = |fail(p°®)|, and
nf (p*) = Nil — ef (p*).

We model the suspiciousness scores with an abstract scor-
ing function score : P* — R* U {0}, which must satisfy
score(p®) > 0 = fail(p®) # 0. The usual formulas can be
used based on the definitions of the counts given above.

We finally implemented a specialized tie breaking mech-
anism in favour of “longer” items from the same rule, i.e.,
whenever score(A — a ® Xw) = score(A — aX e w), we
set the score of the “shorter” item to zero and so remove it
from the pool of possible fault locations. This is based on the
left-to-right reading order of the parser: since all executions
that got to X also got over X, the error cannot be before X.
Appendix B shows details for the localization of faults in G/
over TSgy.

SLE °21, October 17-18, 2021, Chicago, IL, USA

3 Repair Framework

In this section, we formalize the individual elements of our
repair approach. The overall structure of the repair algo-
rithm that follows the find-and-fix cycle mentioned in the
introduction is shown in Algorithm 1; more implementation
details are given in Section 7.

The Repair Problem. We assume that we have a test suite
TSy = (TS*, TS™) for an unknown target language L that is
comprised of positive tests TS* C £ and negative tests TS~
with TS™ N L = 0, and an initial CFG G that fails at least one
testin TS, (e, TS* € L(G) or TS™ N L(G) # 0). The repair
problem is then to construct from TSz and G a “similar” CFG
G’ that accepts all positive tests (i.e., TST C L(G’)) and rejects
all negative tests (i.e., TS™ N L(G’) = 0) and so approximates
L better than G. We require in the following that the test
suite TS is viable for G, i.e.,

(i) it detects at least one fault in G, i.e., (TS™ N L(G)) U
(TS*T\L(G)) # 0;
(ii) it is constructive, i.e., TS~ C L(G).

The first condition ensures that the test suite is strong enough
so we can localize and fix, while the second ensures that
negative tests contain enough structure that can be exploited
for repair attempts. In the remainder of the paper, we assume
a fixed test suite TS » = (TS*, TS™) that is viable for the initial
CFGG.

However, the problem is underspecified and a repair can
“overgeneralize”, i.e., TS* € L(G’) ¢ L.Inan active learning
setting like Angluin’s query model [3], the learner can ask
the teacher whether a given w in L(G’) is also in L, but
in our passive learning setting there is no teacher and £ is
specified only through TS .. We can therefore evaluate the
quality of our repairs only through manual inspection or
based on performance over an additional validation suite.

Patches, Repairs, and Fixes. A grammar patch p is simply
a transformation from one CFG G = (N, T, P, S) into another
CFG G’ = (N',T",P’,§’); we denote this by G ~, G’. In
principle a patch can also introduce new terminal and non-
terminal symbols, but we restrict ourselves to rule patches,
ie,weassume N =N’ T =T’,and S = S’. The introduction
and deletion of non-terminals can be supported by some
simple equivalence transformations, but the introduction
of new terminals is technically more complex, due to the
required integration of lexer and parser.We thus leave this
for future work.
A patch G ~», G’ is viable with respect to a viable test

suite TS if G’ performs no worse over TS s than G, i.e.,

(i) L(G) N TS* C L(G") N TS*;

(i) LG)NTS 2 L(G")NTS;
(iii) Yw € TSy - prefix;(w) < prefix (w)
A viable patch is an improvement if one of the set inclusions
or prefix relations is strict, and a partial repair if one of the
set inclusions is strict, i.e., G’ fails fewer tests than G. Itis a

129

Moeketsi Raselimo and Bernd Fischer

full repair or a fix for G if G’ passes all tests, i.e., TS" C L(G’)
and TS" NL(G’) = 0.
Induced Patches. In the following sections, we define a
series of transformations that compute a patch item ¢° from
a suspicious item p°. However, we cannot simply patch the
grammar by replacing p with g in P: if p was used in at least
one passing positive test case (i.e., p* ~, w foraw € TS")
then an in-place update can make G’ fail a test case that G
was passing, and so render the patch unviable. We therefore
need to control update by spectral counts.

Hence, given G = (N, T, P,S) the patch G ~>(,4) G’ is
induced by the pair (p°®,q*) if G’ = (N, T, P’,S), and

pr = Pt \{p}
P U {q}
By abuse of notation, we also write p ~» q (resp. G ~»4 G’)

to mean G ~»(,,q) G’ if G and G’ (resp. p) are clear from the
context or are immaterial.

ifep*(p*) =0
if ep*(p®) > 0

Good Tokens, Bad Tokens. The second essential ingredient
to make our approach scalable is that we limit the repairs that
are attempted at each repair site through explicit conditions
that capture when a patch is likely to yield a repair. These
conditions are formulated over the grammar structure (using
predicates such as first and follow), pass and fail counts, and
lexical context around the failure locations, aggregated over
the individual false negatives.

Recall that w = uabv ¢ L(G) and ua <y w maximal mean
that the (first) syntax error occurs between a and b. We call
a, which is the last token successfully consumed just before
the parser reports the syntax error, the good token for w and
b the bad token. A pair (a, b),, of good and bad tokens for
w can be seen as a poisoned pair in G [52] and our repair
attempts to break this property. We define the sets of good
tokens T, and bad tokens T, for an item p as the sets of good
and bad tokens from the failing tests in which p is executed,
ie, (T7,T,) = U{(a.b)w | p ~x w,w € TS"} (where the
union is taken componentwise).

Patch Validation against Sample Bigrams. We can pre-
vent some overgeneralization by providing negative tests
(see Section 6), which can be seen as pre-emptive answers
to some membership queries, but this static set cannot be
updated automatically during the repair process without
changing to an active learning setting. We can, however, ex-
tract more information from the positive tests and use this to
check whether a patch can be valid or not. More specifically,
given a test suite TS,y = (TS*, TS™), we collect all sample
bigrams T,(TSz) = {(a,b) | w = xaby € TS*} that occur in
the positive tests, and check that the terminals that can after
the repair occur directly to the left and right of the repair
site also occur as sample bigrams; if not, we reject the patch.
Repair Algorithm. Algorithm 1 shows the main repair
loop that implements the find-and-fix cycle described in the
introduction. It dequeues the top-ranked faulty grammar

Automatic Grammar Repair

Algorithm 1: The main repair loop
input :A faulty grammar G = (N, T,P,S)
input :A test suite TS
output:A fully repaired variant G’ or L
10«0
2 (P, F, Pre) « run_tests(G, TS)
3 Q.enqueue(G, (P, F, Pre, 0))

4 Seen — {G}

5 repeat

6 (G’,{Pg, Fg', Pregr, _)) < Q.dequeue()

7 Ranks < localize(G’, TS)

8 Cands « transform(G’, Ranks)

9 for C € Cands \ Seen do

10 Seen.add(G’)

1 (Pc, Fc, Prec) «— run_tests(C, TS)

12 if F- = (then

13 L return C

14 if improves({Pg, Fo, Prec'), {Pc, Fc, Prec))
then

15 | Q.enqueue(C, (Pc, Fe, Prec, Ranks[C]))

16 until Q.empty()
17 return L

variant G’ from a central priority queue Q, runs localize
to determine possible repair sites (i.e., suspicious items), and
then calls transform to try and apply the patches described
in more detail in the following sections. For each unseen can-
didate C, it uses execute_tests to generate an executable
parser and run it over the test suite TS. If the candidate C
improves on its parent G’, it is enqueued.

The priority queue Q contains pending grammar candi-
dates derived from improving patches. It is keyed by a four-
tuple (P, F, Pre, R), where P and F are the number of passing
and failing tests, respectively, Pre is the length of the suc-
cessfully parsed prefixes, and R is the localization rank of
the patched item from which the candidate was derived. We
use lexical order to determine the priority. The algorithm
also maintains a set of Seen candidate grammars to prevent
non-termination.

The localize module determines potential repair sites
in the faulty grammar variant, and provides further spectral
information such as basic counts (ef, ep, nf, np) and the ag-
gregated sets of good T and bad tokens T, for each item p
to the transform module.

4 Symbol Editing Patches

Our first group of patches is modelled on the basic string
editing operations (i.e., deletion, insertion, and substitution),
applied to the symbols on the right-hand sides of the rules.

130

SLE °21, October 17-18, 2021, Chicago, IL, USA

4.1 Symbol Deletions

We first consider symbol deletion patches. These are useful to
fix bugs where the grammar fails to properly handle optional
elements. Consider for example a test suite TS’%y 2 TSy
that also includes the three (positive) tests:
program a define a() begin relax end begin relax end
program a
define a() -> int begin relax end

begin relax end
program a begin a() end

These tests fail under G,;, because neither paramlist nor
arglist are nullable, and their addition to TS, can be seen
as a “repair request” to change G to allow empty formal
parameter and argument lists.

The localization identifies amongst others the following
three items as suspicious:

fdecl — defineid (e paramlist) body
fdecl — defineid (e paramlist) ->type id body
name — ... | id (e arglist)

In all cases, the sets of good and bad tokens are T* = { (}
and T~ = {) }, respectively. We use the former to check that
the designated position in the item is actually correlated to
the lexical error contexts and, specifically, that the item’s
left set contains only good tokens. This is trivially the case
here, since the left sets of all three items are { (} as well.
We use the latter similar to the way a parser’s panic mode
error recovery uses synchronization tokens: starting at the
designated position, we delete symbols from the rule until
this synchronizes the rule with the bad tokens, i.e., until the
right set of the item after the deletion contains all bad tokens.
This is again trivially the case here, since in all three cases
the corresponding right sets after the deletion of the first
symbol are {) } as well.

However, we need to be careful that we are not adding
rules with exposed nullable symbols, which can use the e-
derivation to accept the new tests but which allow unin-
tended derivations and thus overgeneralize. Consider the
repaired variant Gl%y from Section 1 again:

name — ...|1id (e expr namelist)

namelist — namelist , expr | €

Deleting the expr-symbol at the localized position in the
name-rule allows us to synchronize on) because namelist
is nullable but this also allows for example a derivation
name =¢ id (namelist) =g, id (, id). This overgen-
eralization could be prevented by explicit counter-examples,
but we instead rely on a careful formalization of the synchro-
nization patch and corresponding patch validation.

Definition 1 (synchronization). Letp = A — a ® fw be an
item in P* with left(p) C T

(a) If o = Xy with X non-nullable and T, C first(X),
letd(p,f) = A — a e w be the result of deleting f at the

SLE °21, October 17-18, 2021, Chicago, IL, USA

designated position. Then p ~» d(p,) is a synchronization
patch.

(b) If @ is nullable and T, ¢ follow(A), let d(p, o) =
A — ae be the result of deleting fw at the designated position.
Then p ~» d(p, Pw) is a panic mode synchronization patch.

We validate synchronization patches by checking that the
test suite contains all bigrams that are newly possible by the
deletion of f. More specifically, we compare the left- and
right-sets in G’ against the bigrams around the repair site.

Definition 2 (synchronization validation). Letp = A — a e
P be an item in P®. The synchronization patch G ~»y(p 5) G’
is validated over TS ¢ if lefte: (d(p, f)) X rights, (d(p, f)) C
(TS).

In the running example, the deletions of paramlist and
arglist both only expose the single “repair bigram” ((,)),
which occurs in TZ(TSny).

Example Repairs. gfixr patches the baseline grammar G
against TSﬁﬁ)y as expected, by adding the three rules

Joy

fdecl — defineid () body
fdecl — defineid () ->type id body

name — ... | id ()

The rules are created from the corresponding baseline rules
by deletion of a single symbol at the identified fault locations
shown above, and are added to the grammar, rather than re-
placing the baseline rules, because the latter are used in other
passing tests. gfixr finds this fix with three patches in roughly
two minutes, generating 26 candidate grammars.! Note that
the initially top-ranked item param — etypearrayid in-
duces a rule param — e through a panic mode synchroniza-
tion, but this fails the patch validation and gets ruled out
because FZ(TS’%y) does not contain the bigram ((, ,).

In the variant G%)y from Section 1, the synchronization
deletes both the expr and the subsequent nullable namelist
symbols in the name-rule (and similarly for the fdecl-rule).
gfixr finds the corresponding fix with three patches in less
than 90 seconds, generating 18 candidate grammars.

As an example for the deletion of longer sequence of sym-
bols consider a faulty version of G,,, where the first fdecl-rule
is missing (e.g., due to a missing ?-operator around the se-
quence —> type id at the EBNF level). Here, gfixr introduces
a copy of fdecl-rule without the segment -> type id. It finds
this single patch fix in roughly 30 seconds, generating only
five candidate grammars.

4.2 Symbol Insertions

Symbol insertion patches are useful to fix bugs where gram-
mar developers have missed one or more symbols in a rule,
or even an entire rule (e.g., the second fdecl-rule). However,

1All runtimes given in Section 4 to Section 6 were measured as wall-clock
time on an otherwise idle standard 3.20 GHz desktop with 6 cores and 16
GB RAM.

131

Moeketsi Raselimo and Bernd Fischer

we only insert a single symbol and rely on repeated repairs
to grow larger patches symbol by symbol, in order to limit
the number of different repairs that we need to consider
at each suspicious location. In contrast to symbol deletion
patches, where we effectively check that the bad tokens are
a subset of the right-set (i.e., T, C right(A — «a e w)) and
the patch thus covers all failing tests associated with the
item, we check here only for a non-empty intersection (i.e.,
T, Nright(A — a e w) # 0), in order to allow patch to
(partially) repair a subset of failing tests at a time.

Definition 3 (symbol insertion). Letp = A — a ® w be an
item in P* withleft(p) C T}, andi(p,X) = A — o e Xw be
the result of inserting X € V at the designated position of p.
Ipr‘hﬂ right(i(p, X)) # 0, then p ~ i(p, X) is an insertion
patch.

We validate insertion patches by checking the same con-
dition as for synchronization patches, with the designated
position before the inserted symbol; we do not check the
symmetric condition for the designated position after the
inserted symbol, because the insertion could be part of a
larger patch that is found through repeated insertions.

Definition 4 (insertion validation). Letp = A — a e w be
an item in P* and X € V. The insertion patch G ~,x) G’
is validated over TS iflefte (i(p, X)) X right, (i(p, X)) C
L(TSg).

Example Repair. If we remove the rule
fdecl — defineid () ->type id body

from G,,By, gfixr re-introduces it with three patches, each
inserting an individual symbol to form the segment ->typeid.
It takes 53 seconds, generating 13 candidate grammars.

4.3 Symbol Substitutions

Substitution patches fix bugs where grammar developers
have used a wrong symbol, as shown in the example from
the introduction. Such bugs are particularly difficult to detect
when the grammar is either too permissive (e.g., name —
id [expr 1) or too restrictive, in a way that is only uncovered
by structurally complex tests (e.g., paramlist — param |
param , param.

Definition 5 (symbol substitution). Letp = A — a e Xw be
an item in P* with left(p) C T;, YeV,ands(p,Y)=A—
a e Yw be the result of replacing X at the designated position
by Y. IfT, Nright(A > a e Yw) # 0, thenp ~ s(p,Y) isa
substitution patch.

In contrast to insertion patches, substitution patch val-
idation checks both sides of the repair site, to ensure the
substituted symbol fits tightly.

Definition 6 (substitution validation). Letp =A — a e Xw
be an item in P* and Y € V. The substitution patch G ~5(py)
G’ is validated over TS if

Automatic Grammar Repair

(i) lefte (s(p, Y)) x right (s(p,Y)) C I2(TSy), and
(ii) leftg' (A — aY e w) Xright, (A — aY ew) C IH(TSy).

Substitution patch validation has two specific effects. First,
it leads to a preference for deletions over substitutions with
nullable symbols, which in turn leads to better grammars.
Second, it leads to a preference of insertions over substitu-
tions; in particular, a “compound” patch A — a ¢ Xw ~»
A — aYZ e w is realized via A — aY e Xw and not via
A — aY e w, which reduces the search space.

Example Repair. Substitutions, deletions, and insertions
can interact to create larger repairs. Consider for example
a student implementation of G, where the rule factor —
(expr) is missing, so that it rejects bracketed expressions.
The top-ranked item name — eid [simple] fails the pre-
condition on the good tokens for each potential patch, and
gfixr tries to patch the factor-rules which are ranked next.
There are seven possible insertions and substitutions, which
all pass the validations, but the substitution patch factor —
e not factor ~» factor — e (factor improves most, as it ac-
cepts longer prefixes. The resulting grammar is therefore
picked in the next iteration, where an insertion patch inserts
the missing)-token, completing the fix. gfixr generated 61
candidates in roughly 3 minutes and 30 seconds.

4.4 Symbol Transpositions

The final symbol edit patch we consider is symbol transposi-
tion, which swaps the two symbols following the designated
position. While this is not a common bug pattern, it does
occur in connection with list rules. For example, one student
submission for G, had the following bug in the idlist-rule
idlist ~ — id idlisttail
idlisttail — e id , idlisttail | €
that leads to a pair of adjacent id-tokens in the beginning
and a trailing comma at the end of an idlist. gfixr generates
a patch that swaps id and , in idlisttail, which in turn fixes
the rule. It found this in a single iteration, in about 1 minute
20 seconds, generating 23 candidates.

Definition 7 (symbol transposition). Letp =A — a e XYw
be an item in P* withleft(p) C T}, andt(p) =A - aeYXw
be the result of swapping the symbols X and Y at the designated
position. If T,” N right(p ~> t(p)) # 0, then p ~ t(p) isa

transposition patch.

Transposition patch validation follows the same lines as
substitution patch validation, and checks the corresponding
conditions on the three items A —> c e XYw, A — aX e Yo,
and A — aXY e w.

5 Listification Patches

Right recursion introduction or “listification” patches are
useful to handle bugs where the grammar fails to properly

handle repetitions. Consider for example a variant of G,

132

SLE °21, October 17-18, 2021, Chicago, IL, USA

submitted by a student where the the body-, vdecllist-, and
vdecl-rules in G, are replaced by the following rules:

body — begin vdecls stmts end
vdecls — type id idlist ; e | €

This allows only at most one variable declaration (despite

the intent of the name vdecls) and thus fails the test
program a begin bool a; e bool a relax end

with the e-symbol also indicating the error location observed
in the input.

Definition 8 (listification). LetG = (N, T, P,S),G’ = (N, T,
P’,S) be CFGs, and p = A — ae € P* a reduction item with
first(A) C T".

(a) If A is nullable and A — e € P, let P’ = P\ {p} U{A —
aA}.

(b) If A is nullableand A — € ¢ P, let P’ =P\ {p} U{A —
aA,A — e},

(c) If A is not nullable, let P’ = P U {A — aA}.

Then G ~»>g(p) G’ is a right recursion introduction or
listification patch.

Listification checks if A is nullable to decide whether to
allow empty lists or not; this is a heuristic, but further patches
can refine the repair, if required. It also checks for an existing
e-rule before adding it, to prevent introducing conflicts.

Note that listification can be seen as special case of symbol
insertion that always uses an in-place grammar update. This
can lead to an overgeneralization, because all occurrences of
A are listified at the same time. We can prevent this by check-
ing that the bigrams introduced by the recursion actually
occur in the test suite.

Definition 9 (listification validation). Letp = A — ae bean
item in P°. The listification patch G ~g) G’ is validated over
TS r ifleftg (A — a o A) X right(c:A — a ¢ A) C I,(TSy).

In the example, gfixr finds the single patch fix vdecls —
type id idlist ; vdecls in roughly 30 seconds, generating only
five candidate grammars.

6 Patches from Counterexamples

Recall that the grammar in Fig. 1 does not distinguish prop-
erly between simple identifiers, array indexing expressions,
and function calls, and instead subsumes all three under the
non-terminal name:

assign — name | name : : = expr | name : : = array simple

input — read name

factor — name | ...

name — id | id [simple] | id (expr exprlist)
This means that the compiler’s semantic analysis must filter
out idiosyncratic constructions, such as

e simple identifiers as statements (i.e., function calls

without argument lists), e.g.,
program a begin a end

e array indexing expressions as statements, e.g.,

SLE °21, October 17-18, 2021, Chicago, IL, USA

program a begin a[@] end
e function calls as [val in assignments, array initializa-
tions, and input statements, e.g.,
program a begin a(@) ::= @ end
program a begin a(@) ::= array @ end
program a begin read a(@) end
e array indexing expressions as Ival in array initializa-

tions (which would require nested arrays), e.g.,
program a begin a[@] ::= array @ end

The common cause of such issues is that the grammar
is too permissive, i.e., £ C L(G). A repair requires a lan-
guage restriction or tightening, which can be specified by
negative tests. We focus here on false positives or counter-
examples because arbitrary negative tests do not provide
enough structure to guide the repair. In the following, we
look at two specific tightening patches, rule deletion and
non-terminal splitting or “downcasting”.

6.1 Rule Deletion

Clearly, deleting a rule tightens the language; the only non-
trivial aspect is to ensure that this actually is a viable patch,
i.e., that the deletion does not inadvertently block valid
derivations in G of positive tests.

We can ensure this if the rule is only ever used in reduc-
tions in false positives (i.e., can be seen as an error produc-
tion), and if the patch is applied as an approximation from
above (i.e., all positive tests are already passing without it):

Definition 10 (rule deletion). Let G = (N,T,P,S) with
TS* € L(G),p = A — ae € P* a reduction item, and
ef(p) > 0.IfG = (N,T,P’,S) isa CFG with P’ = P\ {p} then
G ~>g(p) G’ is arule deletion patch.

The gfixr implementation actually uses a relaxed condition
that simply requires that the rule has not been used in parsing
any true positive (i.e., ep(p) = 0 and fail(p) € TS™), although
this could in principle delete it when it would still be used
for a true positive after another patch.

6.2 Non-terminal Splitting

In practice, the conditions of the rule deletion are rarely met,
because the rule is used both in failing and passing tests,
and the error only manifests in certain rule combinations.
Consider for example the rule input — read name, which
only fails in combination with name — id (arglist) .

We therefore need an enabling patch that moves rules into
the right contexts (similar in spirit to CDRC testing [31]) and
so separates out passing and failing rule applications.

Definition 11 (non-terminal splitting). Let G = (N, T, P, S),
p = A — aBwe € P°® a reduction item with Pg = {B —
Biti=1, ep(p) > 0, ef(p) > 0, and fail(p) C TS™. IfG =
(N,T,P’,S) isa CFG withP’ = P\ {p} U {A — af;w} then
G ~g(p,B) G’ is the non-terminal splitting patch for B.

133

Moeketsi Raselimo and Bernd Fischer

Note that splitting a non-terminal only in one of the
rules A — y; can introduce parsing conflicts. In the gfixr-
implementation, we split across all rules A — @;Bw; where
the split non-terminal occurs.

Example Repair. We repaired the idiosyncrasies in G,
with a step, [60] test suite with 159 positive tests and seven
negative tests, including the test

program a begin a ::= @; a end

in addition to the six tests shown above. gfixr finds the fol-
lowing fix in 7 minutes and 36 seconds in 9 generations, after
testing 125 candidates:

stmt — id (Carglist)
| id::=expr | idL[expr] ::=expr | id::= array simple
| cond| ...

input — readid | readid[expr]

The key patches are several splits of name in different con-
texts, followed by the deletion of the split rule variants that
are only used in parsing negative tests. Note that splits at
irrelevant contexts (e.g., in factor) are ruled out because they
do not improve the grammar.

This result is arguably not too far away from a manual
repair (that may introduce a proper Ivalues non-terminal
to factor out the commonalities in assign and read) but the
quality of gfixr’s repairs obviously depends only on the com-
pleteness of the test suite and not on the intent. In this case,
the first six tests only indicate errors in the first stmt of a
stmtlist, and the seventh test case was crucial to confine the
splits to assign and input, and to prevent them from recur-
sively “bubbling up” through stmt to stmtlist.

7 The gfixr System

We have prototyped our repair approach as described in the
previous sections in the gfixr tool.

System Architecture. gfixr implements the repair loop
shown in Algorithm 1. It uses Python and Maven to orches-
trate the repair (e.g., parameter handling or parser genera-
tion) and Java to implement the grammar analyses (such as
computing the left- and right-functions) and transformations
for the patches. The overall system size is about 4.3kLoC.

gfixr can currently only repair CUP grammars, but the
system can be adapted to work with other parser genera-
tors. This requires modifications in the localize (where a
modified parser is required to extract spectral information),
transform (where the grammar meta-model needs to be
adapted), and run_tests (where the build system needs to
be adapted) modules.

The localize module currently uses the Ochiai-metric
that worked well in our experiments, but this can be re-
configured easily.

Patch Selection. Currently, gfixr uses a simplistic strategy
to select the subset and order of the suspicious items iden-
tified by localize where repairs are attempted: it simply

Automatic Grammar Repair

selects all items with a non-zero score and processes them in
descending score order. It tries all transformations described
in the Section 4 to Section 5 at each repair site to produce
candidate patches. Patch selection is therefore integrated
into the transform module.

gfixr evaluates the performance of each candidate patch
over the same input test suite TS . Better performing patches
are pushed towards the front of the priority queue and stand
better chances of further transformations until a fix is found.

Patch Validation. In addition to the specific patch vali-
dation via bigrams, each candidate patch goes through a
generic patch validation to determine whether they improve
over their parent, following the definition of improvements
in Section 3: (i) the candidate reduces the number of failing
test cases, or (ii) when the number of failing test cases re-
mains unchanged, the candidate must consume at least one
longer (and no shorter) prefix than the parent. gfixr discards
candidates which do not improve over their parent.

The bigram-based validation requires sample bigrams that
can be extracted from the test suite or a different set of sample
tests, using a separate small script.

Configuration. gfixr takes as input the initial grammar
and the test suite used for the repair. The mandatory option
—-bigrams_f1ile specifies the separately created file contain-
ing the bigrams used for patch validation.

The repair algorithm can be configured through a number
of command line arguments. —tight restricts the symbol sub-
stitutions and insertions patches and allows only the most
specific possible symbol in a maximal chain A =" B to be
inserted and substituted. -weak_left and —strong_right
change the relation between good resp. bad tokens and left-
resp. right-sets required to enable a transformation to non-
empty intersection resp. containment (see for example Defi-
nition 3). Both settings enable more transformations but may
lead to overgeneralization.

Further options control CUP’s parsing algorithm. —rr sets
the number of reduce/reduce conflicts that are allowed in
the candidate; default is 0. gfixr discards grammars with
more conflicts. —compact_red enables CUP’s action table
compaction, which often allows it to execute reductions
pending on the stack when a syntax error is encountered.
Both options can have an impact on the localization and
should be used only if gfixr cannot repair the grammar.

8 Experiments
8.1 Repairing Student Grammars

In a first set of experiments, we used CUP grammars writ-
ten by students to evaluate gfixr’s efficacy. These grammars
describe different medium-size Pascal-style languages used
in a graduate compiler engineering course. Many of the ap-
proximately 40 submissions have lexical issues and could
not handle the interactions between parser and lexer prop-
erly. Since the current version of gfixr does not support new

134

SLE °21, October 17-18, 2021, Chicago, IL, USA

token creation we discarded submissions with known lexical
issues. We then randomly picked from all submissions that
fail on at least one test the 10 submissions shown in Table 1.

For each target language we generated two test suites
from instructor’s golden grammars, following the approach
outlined in Section 2.2, and use the CDRC test suite as re-
pair specification, and the more diverse one to compute the
bigrams for patch validation.

Results. Table 1 shows overall promising results, and we
can observe a few trends already. First, and foremost, gfixr
can indeed fix grammar bugs: it produces high-quality equiv-
alent fixes that capture the original (human) intent of the
grammar for seven of the ten cases, technically correct but
low-quality fixes that pass all tests for two cases, and fails to
find a repair in one case only. This indicates that the localiza-
tion directs the repair to the right locations, despite the fact
that the localization technique it uses is based on single fault
assumption and some studies have shown that multiple fault
interactions may drop their effectiveness [2, 66], and that the
combined patches are sufficiently expressive; in the failing
case, however, the localization ranked the faulty location too
low, and the repair kept trying to fix correct rules.

Second, repair times are often below a minute, in particular
if the grammar contains only a single or two related bugs, as
in the running example. Grammars with multiple bugs that
require several patches obviously take longer, but gfixr can
still find fixes comprising ten patches in about 20 minutes
wall-clock time. The overall runtime is approximately linear
with the number of candidate grammars.

Third, the number of iterations of the repair loop is typ-
ically the same as the number of applied patches, and the
number of candidate grammars remains small. This again
indicates that the fault localization can identify the faults
sufficiently well, and that the priority queue keeps the most
promising candidates on top.

Finally, most patch types are used widely, but symbol
transposition is applied only once.

8.2 Repairing Pascal Types

In the second experiment we mapped one Pascal dialect to
another. We used the same Pascal grammars as in previous
work [40, 50]. These grammars are derived from different
sources and have been shown to contain multiple devia-
tions [50]. The YACC grammar, which we converted into
CUP format, was extracted from ftp://ftp.iecc.com/pub/file/
pascal-grammar, and the ANTLR(v4) [47] grammar is avail-
able at https://github.com/antlr/grammars-v4/blob/master/
pascal/pascal.g4.

In this experiment we used the ANTLR grammar to gen-
erate a CDRC test suite with a total of 221 tests. The parser
generated from the CUP grammar fails on 47 of these tests,
with more than half (25) of the failing tests related to the
deviation in the type structure. A manual analysis of these

ftp://ftp.iecc.com/pub/file/pascal-grammar
ftp://ftp.iecc.com/pub/file/pascal-grammar
https://github.com/antlr/grammars-v4/blob/master/pascal/pascal.g4
https://github.com/antlr/grammars-v4/blob/master/pascal/pascal.g4

SLE °21, October 17-18, 2021, Chicago, IL, USA

Moeketsi Raselimo and Bernd Fischer

Table 1. Results of student grammar repairs. L is the target language, with 70y the running example, and A to & similarly
complex languages from assignments. bugs is the number of known faults in the student grammars. | TS| is the number of
positive tests in the suite, with fails the number of failing tests. iter. is the number of iterations of the repair loop and cand. the
number of candidate grammars generated. time is measured as wall-clock time on an otherwise idle standard 3.20 GHz desktop
with 6 cores and 16 GB RAM and given as hours:minutes:seconds. applied patches gives the number of different patches in the
fix. The last column gives the perceived quality of the fix (inspired by [63]), with x denoting a fix that corresponds to the
(human) intent of the repair, v denoting a technically correct fix that passes all tests but is of low quality, and X denoting a
failure of gfixr to find a fix. The patches are listed in the appendix.

grammar tests gfixr applied patches

#| L IN| | IT| | |P| | bugs | |TSg]| | fails | iter. | cand. time || D | i|s|t]| 8
1| Yoy 36 | 32| 68 2 69 3 2 32 | 00:01:57 2 *
2 A 46 | 42 | 102 1 179 3 1 23 | 00:01:20 1 *
3|1 A 49 | 43 | 107 1 179 2 1 94 | 00:05:14 1 *
4|8 45 | 42| 88 2 78 2 2 16 | 00:00:52 2] x
51C 35| 27| 60 1 86 1 2 6 | 00:00:30 2 v
6D 451 30| 78 1 79 3 1 6 | 00:00:23 || 1 *
716 46 | 24 | 79 4 80 7 22 250 | 00:20:00 || 3 | 5 *
8| & 47 | 32| 84 4 80 17 10 316 | 00:21:36 || 4 4 v
9| F 39| 46| 96 2 212 26 5 177 | 00:11:15 || 2 | 2 11 %
10 | 7 49 | 72 | 145 >5 212 58 | 260 | 36924 0 X

tests and the grammars revealed that, the ANTLR grammar
has explicit function and procedure types

typeDefinitionPart: TYPE (typeDefinition SEMI)+;
typeDefinition:
id EQUAL (type | functionType | procedureType);

while the CUP grammar allows them in formal parameter
lists:

type_def ::= ID EQ type;

type simple_type | PACKED struct
struct | CAP ID;

LPAR idlist RPAR | ... ;

. | FILE OF type;

simple_type :
struct

We manually reduced the test suite and removed failing
tests which did not expose this type deviation, in order to
focus the repair on the types. This leaves us with a repair
specification in form of 199 positive test cases.

This experiment was performed inside a Docker container
on a 2.70 GHz server with 72 cores and 376GB RAM.

Results. The localizer identified the item type_def — id
EQ e type as most suspicious, from ef and ep counts of 25
and 2, respectively. Starting from this, gfixr learned in 11
iterations a patch that captures the previously failed tests.
The fragment of the candidate patch is shown below.

type_def ::= ID EQ PROCEDURE LPAR formal_p_sects RPAR
| ID EQ PROCEDURE | ID EQ FUNCTION type
| ID EQ FUNCTION COLON type | ID EQ type;
type := simple_type | PACKED struct

| struct | CAP ID;
simple_type ::= LPAR idlist colons RPAR colons
| LPAR idlist RPAR | ... ;

struct . | FILE OF type | FILE;

135

It took gfixr about 21 minutes to find the fix, generating a
total of 317 grammar variants.

8.3 Learning a Language Extension

In a final experiment we used gfixr in a structurally more
complex scenario. We removed from G, the alternatives
for the cond-symbol that involve else- and elsif-tokens,
leaving conditionals only with the basic if-then-end struc-
ture, and tried to find a repair for this variant that “re-learns”
the dropped structure. However, the highly recursive nature
of the elsif-rule posed a challenge for the transformations
that gfixr currently implements, because they cannot cre-
ate a new rule from the middle of another rule to handle
recursion. We therefore manually added an unreachable seed
rule elsifs — elsif. The resulting modified variant G,;By has
thus the following rules:

cond — if expr then stmts end
elsifs — elsif

For the repair we used the same test suite with 442 tests we
use to construct bigrams for the on-the-fly patch validation.
This satisfies adjacent pair coverage (i.e., it contains a word
w with § =" aXYw =" wforall X, Y with Y € follow(X))
and thus provides more syntactic variance than TSg,. We
conducted this experiment on the same machine used to
obtain results shown in Table 1.

Results. The initial grammar failed 56 test cases. The faulty
item cond — if expr thenstmis e end is ranked within
the top 1% of all items, with its bad token set composed of
{elsif, else}. The elsifs seed rule is not executed and has a
suspiciousness score of zero in the first iteration.

Automatic Grammar Repair

gfixr finds a fix in about 56 minutes that passes all tests
after 59 generations. In the process, it generated a total of 937
candidate grammars. Below is the fragment of the generated
grammar that is consistent with the test suite.

cond — if exprthen stmts elsif simple then relax elsifs end
if expr then stmts elsif simple then relax end

if expr then stmts else stmts end

if expr then stmts end

elsifs— else relax

| elsif num then stmts

Note that gfixr has re-learned the core structure of the deleted
rules, but not entirely re-created them. There are two short-
comings. First, some symbols are not general enough (e.g.,
simple instead of expr and relax instead of stmts in the first
two cond-rules). Second, gfixr is missing the list structure of
elsif-clauses. Both can be seen as a shortcoming of the test
suite, since the observed good resp. bad tokens remain too
restricted to allow further generalizations. A larger test suite
or weaker conditions could allow gfixr to find the expected
generalizations, although can lead to overgeneralizations
elsewhere. However, since the grammar is fixed using the
original names, a manual clean-up is feasible.

9 Related Work

Grammar Transformations. Lammel and Zaytsev [30, 67,
68] have defined general grammar transformations and used
them for grammar construction, refactoring, and adaptation
[33, 69], including the extraction and comparison of several
complete grammars from different language specifications
[32, 34]. Jain et. al [22] propose a semi-automatic approach
for building new rules starting from an approximate gram-
mar and a knowledge base of common grammar constructs.
However, this work relies on a human expert to select from
a large number of expressive grammar transformations. Our
approach, in contrast, is fully automatic.

Genetic Grammar Learning. Genetic algorithms (GA)
have also been used to learn CFGs from test suites. The
applied genetic operations include point mutations such
as replacement, insertion, or deletion of symbols [48] and
modification of EBNF operators [8] in a single rule, global
mutations such as merging and splitting of non-terminal
symbols [49], mutated rule duplication [48], or different rule
generalizations [49], and different crossovers where rules
from one grammar are spliced into the other. Our transfor-
mations are similar to those mutations, but we give explicit,
static conditions for their viability, and immediately validate
them against the sample bigrams, which reduces the number
of possible applications; note that sample bigram validation
is only useful in repair, where the parent grammar is already
a good approximation of the target language. We do not use
crossovers, because we repair a single initial grammar and
all candidate grammars have been derived from this, so that
crossovers do not add diversity.

136

SLE °21, October 17-18, 2021, Chicago, IL, USA

The fitness of a grammar is evaluated, as in our approach,
by running the corresponding over the test suite; in practice,
results can improve if positive examples get priority, but neg-
ative examples are required to prevent over-generalization
[8]. Scoring functions are typically based on some version
of balanced accuracy, sometimes taking the length of the
longest recognized fragment into account [35]. Our priority
function follows similar ideas.

Di Penta et al. [48] used GAs to learn the well-separated
extension of a programming language, starting from the full
grammar of the base language. Section 8.3 shows that this
can be achieved with our approach as well.

Inductive Grammar Learning. Our work can be seen as
grammatical inference, which has a long history (e.g., [58])
and has been widely addressed, both in theory and in practice
(see [9, 36, 57, 59] for overviews).

Our approach has the full test suite available, but no
teacher. It therefore sits between Gold’s model of identi-
fication in the limit [13], where observations are presented
in sequence (and approaches are often order-sensitive, e.g.,
[28]) and Angluin’s query model [3], where the learner can
ask the teacher membership and equivalence queries and use
the teacher’s response in guiding the learning process. How-
ever, since we are given an initial grammar, we are solving a
simpler problem than learning the full grammar from scratch.
We focus on learning from unstructured text (textual presen-
tation) because we cannot use the grammar under repair to
construct parse tree skeletons (structural presentation), from
which only the labels need to be learned [11, 57].

Most complete learning algorithms work for regular lan-
guages only, where all necessary properties (e.g., language
equivalence) are decidable, but some work carries over to re-
stricted subclasses of context-free languages [21]. We focus
on heuristic approaches here.

Several systems such as Synapse [44, 45] or Gramin [55]
iteratively parse the positive tests using the current grammar;
when an attempt fails, they introduce a new rule to match
this input. Synapse uses the negative presentation after each
generalization to prevent overgeneralizations. Gramin adds
some heuristics to reduce the search space.

Glade [6] implements a two phase generate-and-test ap-
proach comprising a regular expression generalization (which
introduces alternatives and repetitions), followed by a CFG
generalization (which introduces recursions); repetition and
recursion introduction are somewhat similar to Solomonoff’s
approach [58]. Glade also generates specific check words
from the generalized locations to reject candidates (similar
to our bigram-based validation), but this relies on a teacher.
Glade has been used to successfully learn useful approxi-
mations of some production grammars and represents the
current state-of-the-art in CFG inference.

Grammar-based Test Suite Generation. Since we repair
a CFG against a finite test suite, we need to ensure that

SLE °21, October 17-18, 2021, Chicago, IL, USA

this covers the syntactic structure of the target language £
well. In some application scenarios (e.g., education, grammar
migration, or language modification) we can take advantage
of a grammar for £ that may be available but not accessible
to the developers (i.e., students) or sufficient (e.g., in the
wrong formalism), and automatically generate a test suite.

Several algorithms yield sufficiently detailed test suites
that strike the right balance between syntactic regularity and
variation, e.g., CDRC [31], k-path coverage [16], derivable
pair coverage [60], or automata-based methods [54, 70].

Grammar-based fuzzers (e.g., LangFuzz [17] and IFuzzer
[61]) mostly use random sentence generation techniques,
and often exploit a given corpus to extract seed code frag-
ments [17, 61, 62]. Nautilus [4] exploits grey-box access to
the SUT to provide feedback to the sentence generation.
These systems all assume that a correct grammar is avail-
able; AUTOGRAM (18, 19] uses dynamic tainting to produce
a CFG for the input language but this again requires grey-
box access to the SUT. In parser-directed fuzzing [42], the
parser itself is used to guide the sentence generation. Mimid
[14] extends this to extract an explicit CFG.

Automatic Program Repair. Automated program repair
comes in different flavours, e.g., using symbolic execution
or data-driven techniques. Like gfixr, many approaches are
based on generating candidate patches using different strate-
gies such as genetic programming [15, 64], semantic code
search [26], or bug templates [7, 20, 27, 29, 37-39, 41, 56],
and validating each generated patch over a test suite.

Fault localization plays a key role in such generate-and-
validate approaches, because identifying potentially faulty
code fragments reduces the amount of possible repair sites
that need to be validated. GenProg [15] uses a simple fault
localization technique where statements that are executed by
failing (resp. passing) tests only are assigned a score of one
(resp. zero), and statement executed by both failing and pass-
ing tests a fractional value. SearchRepair [26] uses Tarantula
[24], a common and widely used spectrum-based fault local-
ization metric. gfixr uses the Ochiai [46] metric (see Section
2), another common technique, but can be easily extended
to work with other metrics.

In principle, we could use program repair tools directly on
the parser’s implementation of the grammar. However, our
approach presents several advantages. Fixing the parser code
directly is impossible for table-driven implementations, and
induces much larger fix spaces for recursive descent parsers,
due to the lower level of abstraction. Moreover, it does not
help in applications where the grammar itself must be fixed,
e.g., grammar-based fuzzing.

10 Conclusion

We have described the first approach to automatically re-
pair bugs in context-free grammars. Our approach alternates
over two key steps and gradually improves the grammar

137

Moeketsi Raselimo and Bernd Fischer

until it passes all tests in a given test suite: (i) We use fine-
grained spectrum-based fault localization to identify suspi-
cious items (i.e., specific positions in rules) as potential repair
sites. (i) We use small-scale transformations to patch the
grammar and formulate with each transformation explicit
pre- and post-conditions that are necessary for it to improve
the grammar. Both steps significantly reduce the number
of potential repairs, compared to prior approaches to apply
GAs for grammar learning. We further use a priority queue
to keep improving the most promising candidate grammars.

We implemented this approach in the gfixr system, and
successfully used it to fix CUP grammars that students sub-
mitted as homeworks in a compiler engineering course, and
to map one Pascal dialect grammar against another dialect.

In our experiments, gfixr worked well when the gram-
mar developers were indeed competent, i.e., when the initial
grammars were good approximations of the target grammars.
However, for the simultaneous repair of multiple faults, or
for large repairs that require many patches, the search spaces
become large, and the process becomes slow. Moreover, it can
become sensitive to the test suite and the different heuristics,
and in the worst cases, the repair failed.

Future Work. We plan to extend gfixr to repair grammars
for LL-parsers such as JavaCC or ANTLR, and possibly even
for generalized GLR or GLL parsers, and to run more experi-
ments to evaluate the effect of different test suites, but we
see several directions beyond that to improve our work.

Partial repairs using insertion or substitution patches can
introduce multiple mutated copies of the same base rule. We
plan to clean up the fixed grammar using grammar refactor-
ings (e.g., introducing new non-terminals for alternatives or
common sub-sequences) [30, 67].

Many bugs (especially by students) emerge at the inter-
face between lexer and parser, due to interactions between
the lexer’s first and longest match policies. Fixing such bugs
is easy in principle (e.g., a new keyword can be introduced
through a substitution patch), but the automation is more
complex because lexer and parser need to be updated syn-
chronously. We plan to extend gfixr accordingly, or alterna-
tively, use a scannerless parsing approach [12].

We will also investigate an active repair approach, where
we assume a parser for the unknown target language that can
answer membership queries and serve as teacher in the sense
of Angluin’s query model [3]. The key extension is to replace
bigram-based patch validation by a test suite enrichment,
where we judiciously generate (positive and negative) tests
[52] from the patch candidates, and use the parser to obtain
the expected outcome.

Acknowledgements

The financial assistance of the National Research Foundation
(NRF) under Grant 113364 towards this research is hereby
acknowledged.

Automatic Grammar Repair

Table 2. Spectral counts, Ochiai scores and ranks for G,
over TSggy.

item ef | ep| nf|np| score| rank
program:1:0 || 3|65 0| 8| 0.21|=12]| -
program:1:1 || 3165| 0| 8| 0.21|=12] -
program:1:2|| 3|65 0| 8| 0.21|=12|6
program:2:0 || 3| 8| 0[65| 052| =7| -
program:2:1|| 3| 8| 0] 65| 0.52| =7] -
program:2:2|| 3| 8| 0[65| 052| =74
body:1:1 3167 0| 6| 020 15|7
body:2:1 3] 6| 0]67| 0.58 6|3
name:1:0 3] 9] 0]64| 0.50=10
name:1:1 3] 9] 0]64]|| 050(|=10]|5
name:2:1 31 1| 0721 0.87| =4]-
name:2:2 3/ 1| 0]72| 087 =4|2
name:3:0 31 0f 073} 1.00| =1]-
name:3:1 31 01 0|73} 1.00| =1]-
name:3:2 3/ 0| 0[73| 100 =1]|1

A Running Example Grammar

We mostly draw on examples from teaching in this paper,
since students tend to make many mistakes that can be fixed.
In particular, we use grammars from a compiler engineering
course where students were given a grammar for the 7oy
language in EBNF form, and had to develop corresponding
CUP parsers. We use the instructor’s grammar shown in
Fig. 1 as baseline and retrofit errors made by students in
their own submitted grammars to this baseline to illustrate
our approach.

Note that the language exhibits some quirks, most notably
that formal parameter and argument lists cannot be empty,
that call expressions are allowed in Ivalue positions, and,
conversely, that [values (i.e., simple identifiers and indexing
expressions) are allowed as statements.

B Localization Example

Table 2 shows the counts aggregated from the grammar spec-
trum that we collected by running the CUP parser generated
from the example grammar G;By (see Section 1) over the test
suite TSy, as well as the Ochiai scores and corresponding
ranks for the items p* with ef (p*) > 0. Here, A:n:m denotes
the item A — a ® w from the n-th alternative production for
A where || = m. The Ochiai score of an item p*® is given by

ef (p*)
V(ef (p*) + nf(p*)) X (ef (p*) + ep(p*))
The last two columns show the items ranked by score. On
the left, all elements are ranked, with ties indicated by a
preceding “=”; on the right, ties between items from the
same rule are resolved as described in Section 2.3.
Note that the localization phase identifies only 7 out of 172

items as suspicious; this substantially reduces the number
of patches attempted, and is a main reason for the good

score(p®) =

138

SLE °21, October 17-18, 2021, Chicago, IL, USA

prog — program id body

| program id fdecllist body
fdecllist — fdecl | fdecl fdecllist
fdecl — define id (paramlist) body

| define id (paramlist) -> type id body
paramlist — param | param , paramlist

param — type id | typearray id
type — boolean | int
body — begin stmtsend
| begin vdecllist stmts end
vdecllist — wvdecl | vdecl vdecllist
vdecl — type idlist ; | typearray idlist ;
idlist — id | id, idlist
stmts — relax | stmtlist
stmtlist — stmt | stmt ; stmtlist
stmt — assign | cond | input | leave | output | loop
assign ~ — name | name : :=expr | name : := array simple
cond — if expr then stmtsend
| if expr then stmts elsiflist end
| if expr then stmtselse stmtsend
| if expr then stmts elsiflist else stmtsend
elsiflist ~— elsif expr then stmts
| elsif expr then stmts elsiflist
input — read name
output — write elemlist
elemlist — elem | elem . elemlist
elem — string | expr
loop — while exprdo stmts end
expr — simple | simple relop simple
relop —S=|>=|>|<=|<]| /=
simple — - termlist | termlist
termlist — term | term addop termlist
addop — -|or |+
term — factorlist
factorlist — factor | factor mulop factorlist
mulop —and |/ | * | rem
factor — name | num | Cexpr) | not factor | true | false
name — id|id[simple] | id (arglist)
arglist ~ — expr | expr , arglist

Figure 1. BNF baseline grammar G, suitable for CUP.
We also use italics and bold typewriter font for non-
terminal and terminal symbols, respectively; we use normal
typewriter font for structured tokens with different in-
stances such as identifiers.

performance of our approach. Moreover, it ranks the actual
fault location as the most suspicous amongst those seven
locations and tries to patch there first, thus prioritizing the
eventual fix, but not shutting out other options.

Note further that the first fault blocks the second fault in
namelist, and the corresponding item is scored zero in the
first iteration; however, after the first partial repair, this one
is ranked highest, leading to a fix of both faults in just two
patches.

SLE °21, October 17-18, 2021, Chicago, IL, USA

Moeketsi Raselimo and Bernd Fischer

C Patches for Student Grammars Submission #7 (5).

In this appendix, we show for each grammar used in Sec-

Faulty grammar fragments:

tion 8.1 the faulty fragments from the students’ grammars call ::= CALL ID LPAR comma_expr RPAR;
and the corresponding fragments as patched by gfixr output ::= PUT STRING DOT STRING | ...
p & & p Y8 : factor ::= TRUE | FALSE | NOT factor | NUM | ID
Submission #1 (%y) | ID LBRAC simple RBRAC
Faulty grammar fragments: | ID LPAR comma_expr RPAR;
name = ID RPAR name namelist RPAR; gfixr patched fragments:
namelist ::= namelist COMMA name | €, call CALL ID LPAR RPAR
gfixr patched fragments: CALL ID LPAR comma_expr RPAR;
B) output ::= PUT STRING DOT STRING DOT STRING
namel‘ : ID RII/.XR exp;Mzamellst RPAR; PUT STRING DOT STRING | ...
namelist ::= namelist COMMA expr | e; factor ::= TRUE | FALSE | NOT factor | NUM | ID

Submission #2 (A).
Faulty grammar fragments:

LPAR NUM RPAR

ID LBRAC simple RBRAC
ID LPAR RPAR

ID LPAR comma_expr RPAR;

startVarIDs ::= IDENT variablelDs;
variableIDs ::= IDENT COMMA variablelIDs | €; L.
i Submission #8 (E).
gfixr patched fragments:
Faulty grammar fragments:
startVarIDs ::= IDENT variablelDs; vardef :i= e
variableIDs ::= COMMA IDENT variablelIDs | €; .

Submission #3 (A).
Faulty grammar fragments:

vardef_list :

type ID COMMA
vardef_list SEMICOLON ;
:= vardef_list COMMA type ID;

assign ::= ID SQR_LEFT simple SQR_RIGHT ASSIGN expr
vdecl_more ::= vdecl_more COMMA vdecl | e; | ID SQR_LEFT simple SQR_RIGHT ASSIGN ARRAY
gfixr patched fragments: simple
| ID ASSIGN expr
vdecl_more ::= vdecl_more SEMI vdecl | €; | ID ASSIGN ARRAY simple;
.. factor ::= ID BRACKET_LEFT expr_list BRACKET_RIGHT
Submission #4 (B) | ID SQR_LEFT simple SQR_RIGHT
Faulty grammar fragments: | NUM
vardef := type IDENT identlList SEMI | €; | BRACKET_LEFT expr BRACKET_RIGHT
stmtList ::= SEMI stmt | €; | NOT factor
. | TRUE | FALSE;
gfixr patched fragments string ::= QUOTE STRING QUOTE;
vardef ::= type IDENT identList SEMI vardef | e€; .
stmtList ::= SEMI stmt stmtList | €; gflxr patched fragments:
L. vardef ::= €
Submission #5 (C). | type ID COMMA vardef
Faulty grammar fragments: | type ID SEMICOLON vardef
zeroormanysimple : := ADDOP term zeroormanysimple | €; | vardef_list SEMICOLON ;
factor ::= NUM | ...; vardef_list ::= vardef_list COMMA type ID;
assign ::= ID SQR_LEFT simple SQR_RIGHT ASSIGN expr
gfixr patched fragments: | ID SQR_LEFT simple SQR_RIGHT ASSIGN ARRAY
zeroormanysimple : := ADDOP term zeroormanysimple | €; simple
factor ::= NUM NEGATE factor | NUM | ...; | ID COMMA expr
| ID ASSIGN expr
Submission #6 (D). | ID
Faulty grammar fragments: | ID ASSIGN ARRAY simple;
factor ::= ID LBRAC simple RBRAC factor ::= ID BRACKET_LEFT BRACKET_RIGHT
| ID LPAR expr exprlist RPAR | ID BRACKET_LEFT expr_list BRACKET_RIGHT
| LPAR expr RPAR | ig SQR_LEFT simple SQR_RIGHT
| NOT factor l
| NUM
| INT | TRUE | FALSE;
| BRACKET_LEFT expr BRACKET_RIGHT
gfixr patched fragments: | NOT factor
factor ::= ID LBRAC simple RBRAC _ | TRUE | FALSE;
| ID LPAR expr exprlist RPAR string ::= STRING
| ID | QUOTE STRING QUOTE;
| LPAR expr RPAR
| NOT factor
|

INT | TRUE | FALSE;

139

Automatic Grammar Repair

Submission #9 (F).

Faulty grammar fragments:

varlist = var SEMI varlist | €;
seg ::= MINUS term termlist
| PLUS term termlist;
gfixr patched fragments:
varlist ::= var SEMI varlist | var | e€;
seg ::= MINUS MINUS term termlist
| MINUS term termlist
| PLUS term termlist;
References

(1]

—
S
fla?

—
w
[

—
A=)
—

[10

—

(11]

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2006. An
Evaluation of Similarity Coefficients for Software Fault Localization.
In 12th IEEE Pacific Rim International Symposium on Dependable Com-
puting (PRDC 2006), 18-20 December, 2006, University of California,
Riverside, USA. IEEE Computer Society, 39-46. https://doi.org/10.
1109/PRDC.2006.18

Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009.
Spectrum-Based Multiple Fault Localization. In ASE 2009, 24th
IEEE/ACM International Conference on Automated Software Engineering,
Auckland, New Zealand, November 16-20, 2009. IEEE Computer Society,
88-99. https://doi.org/10.1109/ASE.2009.25

Dana Angluin. 1987. Queries and Concept Learning. Mach. Learn. 2, 4
(1987), 319-342. https://doi.org/10.1007/BF00116828

Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAU-
TILUS: Fishing for Deep Bugs with Grammars. In 26th Annual
Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-
for-deep-bugs-with-grammars/

Chelsea Barraball, Moeketsi Raselimo, and Bernd Fischer. 2020. An
interactive feedback system for grammar development (tool paper).
In Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2020, Virtual Event, USA, November
16-17, 2020, Ralf Lammel, Laurence Tratt, and Juan de Lara (Eds.). ACM,
101-107. https://doi.org/10.1145/3426425.3426935

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017.
Synthesizing program input grammars. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen
and Martin T. Vechev (Eds.). ACM, 95-110. https://doi.org/10.1145/
3062341.3062349

Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and
Eric A. Brewer. 2002. Pinpoint: Problem Determination in Large, Dy-
namic Internet Services. In 2002 International Conference on Dependable
Systems and Networks (DSN 2002), 23-26 June 2002, Bethesda, MD, USA,
Proceedings. 595-604. https://doi.org/10.1109/DSN.2002.1029005
Matej Crepinsek, Marjan Mernik, Barrett R. Bryant, Faizan Javed, and
Alan P. Sprague. 2005. Inferring Context-Free Grammars for Domain-
Specific Languages. Electron. Notes Theor. Comput. Sci. 141, 4 (2005),
99-116. https://doi.org/10.1016/j.entcs.2005.02.055

Colin de la Higuera. 2010. Grammatical Inference: Learning Automata
and Grammars. Cambridge University Press.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978.
Hints on Test Data Selection: Help for the Practicing Programmer.
Computer 11,4 (1978), 34-41. https://doi.org/10.1109/C-M.1978.218136
Frank Drewes and Johanna Hogberg. 2003. Learning a Regular Tree
Language from a Teacher. In Developments in Language Theory, 7th
International Conference, DLT 2003, Szeged, Hungary, July 7-11, 2003,
Proceedings (Lecture Notes in Computer Science, Vol. 2710), Zoltan Esik

140

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

SLE °21, October 17-18, 2021, Chicago, IL, USA

and Zoltan Fulop (Eds.). Springer, 279-291. https://doi.org/10.1007/3-
540-45007-6_22

Giorgios Economopoulos, Paul Klint, and Jurgen J. Vinju. 2009. Faster
Scannerless GLR Parsing. In Compiler Construction, 18th International
Conference, CC 2009, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-
29, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5501),
Oege de Moor and Michael I. Schwartzbach (Eds.). Springer, 126-141.
https://doi.org/10.1007/978-3-642-00722-4_10

E. Mark Gold. 1967. Language Identification in the Limit. Inf. Control.
10, 5 (1967), 447-474. https://doi.org/10.1016/S0019-9958(67)91165-5
Rahul Gopinath, Bjérn Mathis, and Andreas Zeller. 2020. Mining input
grammars from dynamic control flow. In ESEC/FSE °20: 28th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November
8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann
(Eds.). ACM, 172-183. https://doi.org/10.1145/3368089.3409679
Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley
Weimer. 2012. GenProg: A Generic Method for Automatic Software
Repair. IEEE Trans. Software Eng. 38, 1 (2012), 54-72. https://doi.org/
10.1109/TSE.2011.104

Nikolas Havrikov and Andreas Zeller. 2019. Systematically Covering
Input Structure. In 34th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2019, San Diego, CA, USA, November
11-15, 2019. IEEE, 189-199. https://doi.org/10.1109/ASE.2019.00027
Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with
Code Fragments. In Proceedings of the 21th USENIX Security Sympo-
sium, Bellevue, WA, USA, August 8-10, 2012, Tadayoshi Kohno (Ed.).
USENIX Association, 445-458. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

Matthias Hoschele and Andreas Zeller. 2016. Mining input grammars
from dynamic taints. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2016), David Lo,
Sven Apel, and Sarfraz Khurshid (Eds.). ACM, New York, NY, USA,
720-725. https://doi.org/10.1145/2970276.2970321

Matthias Hoschele and Andreas Zeller. 2017. Mining input grammars
with AUTOGRAM. In Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28,
2017 - Companion Volume, Sebastian Uchitel, Alessandro Orso, and
Martin P. Robillard (Eds.). IEEE Computer Society, 31-34. https:
//doi.org/10.1109/ICSE-C.2017.14

Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018.
Towards practical program repair with on-demand candidate gener-
ation. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman
(Eds.). ACM, 12-23. https://doi.org/10.1145/3180155.3180245

Malte Isberner. 2015. Foundations of active automata learning: an algo-
rithmic perspective. Ph.D. Dissertation. Technical University Dortmund,
Germany. http://hdl.handle.net/2003/34282

Rahul Jain, Sanjeev Kumar Aggarwal, Pankaj Jalote, and Shiladitya
Biswas. 2004. An interactive method for extracting grammar from
programs. Softw. Pract. Exp. 34, 5 (2004), 433-447. https://doi.org/10.
1002/spe.568

James A. Jones and Mary Jean Harrold. 2005. Empirical evaluation of
the tarantula automatic fault-localization technique. In 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2005),
November 7-11, 2005, Long Beach, CA, USA, David F. Redmiles, Thomas
Ellman, and Andrea Zisman (Eds.). ACM, 273-282. https://doi.org/10.
1145/1101908.1101949

James A. Jones, Mary Jean Harrold, and John T. Stasko. 2002. Visualiza-
tion of test information to assist fault localization. In Proceedings of the
24th International Conference on Software Engineering, ICSE 2002, 19-25
May 2002, Orlando, Florida, USA, Will Tracz, Michal Young, and Jeff
Magee (Eds.). ACM, 467-477. https://doi.org/10.1145/581339.581397

https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1007/BF00116828
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://doi.org/10.1145/3426425.3426935
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1016/j.entcs.2005.02.055
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1007/3-540-45007-6_22
https://doi.org/10.1007/3-540-45007-6_22
https://doi.org/10.1007/978-3-642-00722-4_10
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1145/3368089.3409679
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/ASE.2019.00027
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1145/2970276.2970321
https://doi.org/10.1109/ICSE-C.2017.14
https://doi.org/10.1109/ICSE-C.2017.14
https://doi.org/10.1145/3180155.3180245
http://hdl.handle.net/2003/34282
https://doi.org/10.1002/spe.568
https://doi.org/10.1002/spe.568
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/581339.581397

—

—

[t

—

[t

—

[t}

[l

—

—

SLE °21, October 17-18, 2021, Chicago, IL, USA

[25] Alan Kaplan and Denise Shoup. 2000. CUPV - a visualization tool

for generated parsers. In Proceedings of the 31st SIGCSE Technical
Symposium on Computer Science Education, SIGCSE 2000, Austin,
Texas, USA, March 7-12, 2000, Lillian (Boots) Cassel, Nell B. Dale,
Henry MacKay Walker, and Susan M. Haller (Eds.). ACM, 11-15.
https://doi.org/10.1145/330908.331801

Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015.
Repairing Programs with Semantic Code Search (T). In 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015,
Lincoln, NE, USA, November 9-13, 2015, Myra B. Cohen, Lars Grunske,
and Michael Whalen (Eds.). IEEE Computer Society, 295-306. https:
//doi.org/10.1109/ASE.2015.60

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013.
Automatic patch generation learned from human-written patches.
In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, David Notkin, Betty H. C.
Cheng, and Klaus Pohl (Eds.). IEEE Computer Society, 802-811. https:
//doi.org/10.1109/ICSE.2013.6606626

Bruce Knobe and Kathleen Knobe. 1976. A Method for Inferring
Context-free Grammars. Inf. Control. 31, 2 (1976), 129-146. https:
//doi.org/10.1016/S0019-9958(76)80003-4

Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques
Klein, Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining
relevant fix patterns for automated program repair. Empir. Softw. Eng.
25,3 (2020), 1980-2024. https://doi.org/10.1007/s10664-019-09780-z
Ralf Limmel. 2001. Grammar Adaptation. In FME 2001: Formal Methods
for Increasing Software Productivity, International Symposium of For-
mal Methods Europe, Berlin, Germany, March 12-16, 2001, Proceedings
(Lecture Notes in Computer Science, Vol. 2021), José Nuno Oliveira and
Pamela Zave (Eds.). Springer, 550-570. https://doi.org/10.1007/3-540-
45251-6_32

Ralf Lammel. 2001. Grammar Testing. In Fundamental Approaches
to Software Engineering, 4th International Conference, FASE 2001 Held
as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings (Lec-
ture Notes in Computer Science, Vol. 2029), Heinrich Huimann (Ed.).
Springer, 201-216. https://doi.org/10.1007/3-540-45314-8_15

Ralf Lammel and Chris Verhoef. 2001. Semi-automatic grammar re-
covery. Softw. Pract. Exp. 31, 15 (2001), 1395-1438. https://doi.org/10.
1002/spe.423

Ralf Laimmel and Vadim Zaytsev. 2009. An Introduction to Grammar
Convergence. In Integrated Formal Methods, 7th International Confer-
ence, IFM 2009, Diisseldorf, Germany, February 16-19, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5423), Michael Leuschel and
Heike Wehrheim (Eds.). Springer, 246-260. https://doi.org/10.1007/978-
3-642-00255-7_17

Ralf Limmel and Vadim Zaytsev. 2009. Recovering Grammar Relation-
ships for the Java Language Specification. In Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation, SCAM
2009, Edmonton, Alberta, Canada, September 20-21, 2009. IEEE Com-
puter Society, 178-186. https://doi.org/10.1109/SCAM.2009.29

Marc M. Lankhorst. 1994. Grammatical Inference with a Genetic
Algorithm. In Massively Parallel Processing Applications and Develom-
pent, Proceedings of the 1994 EUROSIM Conference on Massively Parallel
Processing Applications and Develompent, 21-23 June 1994, Delft, The
Netherlands, Len Dekker, Wim Smit, and Jan C. Zuidervaart (Eds.).
Elsevier, 423-430.

Lillian Lee. 1996. Learning of Context-Free Languages: A Survey of
the Literature. Technical Report Computer Science Group Technical
Report TR-12-96. Harvard University.

Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques
Klein, and Yves Le Traon. 2019. You Cannot Fix What You Cannot
Find! An Investigation of Fault Localization Bias in Benchmarking Au-
tomated Program Repair Systems. In 12th IEEE Conference on Software

Moeketsi Raselimo and Bernd Fischer

Testing, Validation and Verification, ICST 2019, Xi’an, China, April 22-27,
2019.IEEE, 102-113. https://doi.org/10.1109/ICST.2019.00020

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé.
2019. TBar: revisiting template-based automated program repair. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19,
2019, Dongmei Zhang and Anders Moller (Eds.). ACM, 31-42. https:
//doi.org/10.1145/3293882.3330577

Xuliang Liu and Hao Zhong. 2018. Mining stackoverflow for program
repair. In 25th International Conference on Software Analysis, Evolution
and Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018,
Rocco Oliveto, Massimiliano Di Penta, and David C. Shepherd (Eds.).
IEEE Computer Society, 118-129. https://doi.org/10.1109/SANER.2018.
8330202

Ravichandhran Madhavan, Mikaél Mayer, Sumit Gulwani, and Viktor
Kuncak. 2015. Automating grammar comparison. In Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan
Aldrich and Patrick Eugster (Eds.). ACM, 183-200. https://doi.org/10.
1145/2814270.2814304

Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair
Search Space with Automatically Mined Templates: The Cardumen
Mode of Astor. In Search-Based Software Engineering - 10th Inter-
national Symposium, SSBSE 2018, Montpellier, France, September 8-
9, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11036),
Thelma Elita Colanzi and Phil McMinn (Eds.). Springer, 65-86. https:
//doi.org/10.1007/978-3-319-99241-9_3

Bjorn Mathis, Rahul Gopinath, Michaél Mera, Alexander Kampmann,
Matthias Hoschele, and Andreas Zeller. 2019. Parser-directed fuzzing.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA,
June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM,
548-560. https://doi.org/10.1145/3314221.3314651

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model
for spectra-based software diagnosis. ACM Trans. Softw. Eng. Methodol.
20, 3 (2011), 11:1-11:32. https://doi.org/10.1145/2000791.2000795
Katsuhiko Nakamura. 2006. Incremental Learning of Context Free
Grammars by Bridging Rule Generation and Search for Semi-optimum
Rule Sets. In Grammatical Inference: Algorithms and Applications, 8th In-
ternational Colloquium, ICGI 2006, Tokyo, Japan, September 20-22, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 4201), Yasubumi
Sakakibara, Satoshi Kobayashi, Kengo Sato, Tetsuro Nishino, and Etsuji
Tomita (Eds.). Springer, 72-83. https://doi.org/10.1007/11872436_7
Katsuhiko Nakamura and Takashi Ishiwata. 2000. Synthesizing Con-
text Free Grammars from Sample Strings Based on Inductive CYK
Algorithm. In Grammatical Inference: Algorithms and Applications, 5th
International Colloquium, ICGI 2000, Lisbon, Portugal, September 11-13,
2000, Proceedings (Lecture Notes in Computer Science, Vol. 1891), Ar-
lindo L. Oliveira (Ed.). Springer, 186-195. https://doi.org/10.1007/978-
3-540-45257-7_15

Akira Ochiai. 1957. Zoogeographical studies on the soleoid fishes
found in Japan and its neighhouring regions-II. Bulletin of the Japanese
Society of Scientific Fisheries 22, 9 (1957), 526-530. https://doi.org/10.
2331/suisan.22.526

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*)
parsing: the power of dynamic analysis. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland,
OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein
(Eds.). ACM, 579-598. https://doi.org/10.1145/2660193.2660202
Massimiliano Di Penta, Pierpaolo Lombardi, Kunal Taneja, and Luigi
Troiano. 2008. Search-based inference of dialect grammars. Soft
Comput. 12,1 (2008), 51-66. https://doi.org/10.1007/s00500-007-0216-5

https://doi.org/10.1145/330908.331801
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1016/S0019-9958(76)80003-4
https://doi.org/10.1016/S0019-9958(76)80003-4
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1007/3-540-45251-6_32
https://doi.org/10.1007/3-540-45251-6_32
https://doi.org/10.1007/3-540-45314-8_15
https://doi.org/10.1002/spe.423
https://doi.org/10.1002/spe.423
https://doi.org/10.1007/978-3-642-00255-7_17
https://doi.org/10.1007/978-3-642-00255-7_17
https://doi.org/10.1109/SCAM.2009.29
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1109/SANER.2018.8330202
https://doi.org/10.1109/SANER.2018.8330202
https://doi.org/10.1145/2814270.2814304
https://doi.org/10.1145/2814270.2814304
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1145/3314221.3314651
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1007/11872436_7
https://doi.org/10.1007/978-3-540-45257-7_15
https://doi.org/10.1007/978-3-540-45257-7_15
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.2331/suisan.22.526
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1007/s00500-007-0216-5

Automatic Grammar Repair

(49]

(50]

(51]

(52]

(53]

[54

flan)

(55

—

(56]

(57]

(58]

(59]

Georgios Petasis, Georgios Paliouras, Constantine D. Spyropoulos, and
Constantine Halatsis. 2004. eg-GRIDS: Context-Free Grammatical In-
ference from Positive Examples Using Genetic Search. In Grammatical
Inference: Algorithms and Applications, 7th International Colloquium,
ICGI 2004, Athens, Greece, October 11-13, 2004, Proceedings (Lecture
Notes in Computer Science, Vol. 3264), Georgios Paliouras and Yasub-
umi Sakakibara (Eds.). Springer, 223-234. https://doi.org/10.1007/978-
3-540-30195-0_20

Moeketsi Raselimo and Bernd Fischer. 2019. Spectrum-based fault
localization for context-free grammars. In Proceedings of the 12th ACM
SIGPLAN International Conference on Software Language Engineering,
SLE 2019, Athens, Greece, October 20-22, 2019, Oscar Nierstrasz, Jeff
Gray, and Bruno C. d. S. Oliveira (Eds.). ACM, 15-28. https://doi.org/
10.1145/3357766.3359538

Moeketsi Raselimo and Bernd Fischer. 2021. Precise Spectrum-Based
Fault Localization for Grammars. In preparation.

Moeketsi Raselimo, Jan Taljaard, and Bernd Fischer. 2019. Breaking
parsers: mutation-based generation of programs with guaranteed syn-
tax errors. In Proceedings of the 12th ACM SIGPLAN International Con-
ference on Software Language Engineering, SLE 2019, Athens, Greece, Oc-
tober 20-22, 2019, Oscar Nierstrasz, Jeff Gray, and Bruno C. d. S. Oliveira
(Eds.). ACM, 83-87. https://doi.org/10.1145/3357766.3359542

Manos Renieris and Steven P. Reiss. 2003. Fault Localization With
Nearest Neighbor Queries. In 18th IEEE International Conference on
Automated Software Engineering (ASE 2003), 6-10 October 2003, Mon-
treal, Canada. IEEE Computer Society, 30-39. https://doi.org/10.1109/
ASE.2003.1240292

Christoff Rossouw and Bernd Fischer. 2020. Test case generation from
context-free grammars using generalized traversal of LR-automata.
In Proceedings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2020, Virtual Event, USA, November
16-17, 2020, Ralf Lammel, Laurence Tratt, and Juan de Lara (Eds.). ACM,
133-139. https://doi.org/10.1145/3426425.3426938

Diptikalyan Saha and Vishal Narula. 2011. Gramin: a system for incre-
mental learning of programming language grammars. In Proceeding of
the 4th Annual India Software Engineering Conference, ISEC 2011, Thiru-
vananthapuram, Kerala, India, February 24-27, 2011, Arun Bahulkar,
K. Kesavasamy, T. V. Prabhakar, and Gautam Shroff (Eds.). ACM, 185-
194. https://doi.org/10.1145/1953355.1953380

Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad.
2017. ELIXIR: effective object oriented program repair. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software
Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017,
Grigore Rosu, Massimiliano Di Penta, and Tien N. Nguyen (Eds.). [EEE
Computer Society, 648-659. https://doi.org/10.1109/ASE.2017.8115675
Yasubumi Sakakibara. 1997. Recent Advances of Grammatical Infer-
ence. Theor. Comput. Sci. 185, 1 (1997), 15-45. https://doi.org/10.1016/
S0304-3975(97)00014-5

Ray J. Solomonoff. 1959. A new method for discovering the grammars
of phrase structure languages. In Information Processing, Proceedings
of the 1st International Conference on Information Processing, UNESCO,
Paris 15-20 June 1959. UNESCO (Paris), 285-289.

Andrew Stevenson and James R. Cordy. 2014. A survey of grammatical
inference in software engineering. Sci. Comput. Program. 96 (2014),

142

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

SLE °21, October 17-18, 2021, Chicago, IL, USA

444-459. https://doi.org/10.1016/j.scico.2014.05.008

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and
Bernd Fischer. 2020. Grammar-based testing for little languages: an
experience report with student compilers. In Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language En-
gineering, SLE 2020, Virtual Event, USA, November 16-17, 2020, Ralf
Lammel, Laurence Tratt, and Juan de Lara (Eds.). ACM, 253-269.

ht‘tps://doi.org/]O.] 145/3426425.3426946
Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016.

IFuzzer: An Evolutionary Interpreter Fuzzer Using Genetic Program-
ming. In Computer Security - ESORICS 2016 - 21st European Sympo-
sium on Research in Computer Security, Heraklion, Greece, September
26-30, 2016, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 9878), Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Kat-
sikas, and Catherine A. Meadows (Eds.). Springer, 581-601. https:
//doi.org/10.1007/978-3-319-45744-4_29

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire:
Data-Driven Seed Generation for Fuzzing. In 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE
Computer Society, 579-594. https://doi.org/10.1109/SP.2017.23
Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. 2018. Auto-
mated model repair for Alloy. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018, Marianne Huchard,
Christian Késtner, and Gordon Fraser (Eds.). ACM, 577-588. https:
//doi.org/10.1145/3238147.3238162

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. 2009. Automatically finding patches using genetic program-
ming. In 31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Proceedings. IEEE, 364-374.
https://doi.org/10.1109/ICSE.2009.5070536

W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2014. The
DStar Method for Effective Software Fault Localization. IEEE Trans.
Reliab. 63, 1 (2014), 290-308. https://doi.org/10.1109/TR.2013.2285319
Xiaozhen Xue and Akbar Siami Namin. 2013. How Significant is the
Effect of Fault Interactions on Coverage-Based Fault Localizations?.
In 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, Baltimore, Maryland, USA, October 10-
11, 2013. IEEE Computer Society, 113-122. https://doi.org/10.1109/
ESEM.2013.22

Vadim Zaytsev. 2009. Language Convergence Infrastructure. In Gen-
erative and Transformational Techniques in Software Engineering Il
- International Summer School, GTTSE 2009, Braga, Portugal, July 6-
11, 2009. Revised Papers (Lecture Notes in Computer Science, Vol. 6491),
Jodo M. Fernandes, Ralf Lammel, Joost Visser, and Jodo Saraiva (Eds.).
Springer, 481-497. https://doi.org/10.1007/978-3-642-18023-1_16
Vadim Zaytsev. 2010. Recovery, Convergence and Documentation of
Languages.

Vadim Zaytsev. 2014. Negotiated Grammar Evolution. J. Object Technol.
13,3 (2014), 1: 1-22. https://doi.org/10.5381/jot.2014.13.3.a1

Sergey V. Zelenov and Sophia A. Zelenova. 2005. Generation of Positive
and Negative Tests for Parsers. Program. Comput. Softw. 31, 6 (2005),
310-320. https://doi.org/10.1007/s11086-005-0040-6

https://doi.org/10.1007/978-3-540-30195-0_20
https://doi.org/10.1007/978-3-540-30195-0_20
https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3357766.3359542
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1109/ASE.2003.1240292
https://doi.org/10.1145/3426425.3426938
https://doi.org/10.1145/1953355.1953380
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1016/S0304-3975(97)00014-5
https://doi.org/10.1016/S0304-3975(97)00014-5
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1145/3426425.3426946
https://doi.org/10.1007/978-3-319-45744-4_29
https://doi.org/10.1007/978-3-319-45744-4_29
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1145/3238147.3238162
https://doi.org/10.1145/3238147.3238162
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/ESEM.2013.22
https://doi.org/10.1109/ESEM.2013.22
https://doi.org/10.1007/978-3-642-18023-1_16
https://doi.org/10.5381/jot.2014.13.3.a1
https://doi.org/10.1007/s11086-005-0040-6

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Context-Free Grammars
	2.2 Test Suites for CFGs
	2.3 Spectrum-Based Fault Localization in CFGs

	3 Repair Framework
	4 Symbol Editing Patches
	4.1 Symbol Deletions
	4.2 Symbol Insertions
	4.3 Symbol Substitutions
	4.4 Symbol Transpositions

	5 Listification Patches
	6 Patches from Counterexamples
	6.1 Rule Deletion
	6.2 Non-terminal Splitting

	7 The gfixr System
	8 Experiments
	8.1 Repairing Student Grammars
	8.2 Repairing Pascal Types
	8.3 Learning a Language Extension

	9 Related Work
	10 Conclusion
	A Running Example Grammar
	B Localization Example
	C Patches for Student Grammars
	References

