
Fault Localization and Repair for
Grammarware

by

Moeketsi Raselimo

Dissertation presented for the degree of Doctor of
Philosophy (Computer Science) in the Faculty of Science

at Stellenbosch University

Supervisor: Prof. Bernd Fischer

March 2023

The financial assistance of the National Research Foundation (NRF) under Grant 113364 towards this
research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author
and are not necessarily to be attributed to the NRF.

Stellenbosch University https://scholar.sun.ac.za

Declaration

By submitting this dissertation electronically, I declare that the entirety of
the work contained therein is my own, original work, that I am the sole
author thereof (save to the extent explicitly otherwise stated), that repro-
duction and publication thereof by Stellenbosch University will not infringe
any third party rights and that I have not previously in its entirety or in part
submitted it for obtaining any qualification.

Date: March 2023

Copyright © 2023 Stellenbosch University
All rights reserved.

iii

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

Abstract

Fault Localization and Repair for Grammarware
M. Raselimo

Computer Science Division,
Department of Mathematical Sciences

Stellenbosch University,
Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD (CS)
March 2023

Context-free grammars (CFGs) or simply grammars, are widely used to de-
scribe and encode the structure of complex objects. Systems that process
such structured objects are known as grammarware. CFGs are also used
for software engineering tasks such as testing grammarware, specifically in
test suite generation and fuzzing. However, correct and complete CFGs are
rarely available, which limits the benefits of these automated techniques.

While current grammar engineering approaches can demonstrate the
presence of faults in CFGs, none of them can be used to confirm the lo-
cations of these faults, much less repair them. In this thesis, we address
this problem and develop, implement and evaluate novel automated meth-
ods that find locations of faults in CFGs and repair them against a test suite
specification.

We describe and evaluate the first spectrum-based method aimed at find-
ing faults CFGs. In its basic form, it takes as input a test suite and a modi-
fied parser for the grammar that can collect grammar spectra, i.e., the sets of
grammar elements used in attempts to parse the individual test cases, and
returns as output a ranked list of suspicious elements. We define grammar
spectra suitable for localizing faults on the level of the grammar rules and
at the rules’ individual symbols, respectively. We show how these types of
spectra can be collected in widely used parsing tools. We also show how the
spectra can be constructed directly from test cases derived from a grammar,
and how these synthetic spectra can be used for localization in cases where
standalone parsers implementing the grammars are not available.

We qualitatively and quantitatively demonstrate the effectiveness of our
fault localization approach. We first evaluate our method over a large num-

v

Stellenbosch University https://scholar.sun.ac.za

vi ABSTRACT

ber of medium-sized single fault CFGs, which we constructed by fault seed-
ing from a common origin grammar. At the rule level, it ranks the rules
containing the seeded faults within the top five rules in about 40%–70% of
the cases, and pinpoints them (i.e., correctly identifies them as unique most
suspicious rule) in about 10%–30% of the cases, with significantly better re-
sults for the synthetic spectra. On average, it ranks the faulty rules within
about 25% of all rules. At the item level, our method remains remarkably ef-
fective despite the larger number of possible locations: it typically ranks the
seeded faults within the top five positions in about 30%–60% of the cases,
and pinpoints them in about 15%–40% of the cases. On average, it ranks the
seeded faults within about 10%–20% of all positions.

We further evaluate our method over CFGs that contain real faults. We
show that an iterative approach can be used to localize and manually re-
move one by one multiple faults in grammars submitted by students en-
rolled in various compiler engineering courses; in most iterations, the top-
ranked rule already contains an error, and no error is ranked outside the
top five ranked rules. We finally apply our method to a large open-source
SQLite grammar and show where the original version deviates from the
language accepted by the actual SQLite system.

We then describe the first method to automatically repair faults in CFGs:
given a grammar that fails some tests in a given test suite, we iteratively
and gradually transform the grammar until it passes all tests. Our core idea
is to build on spectrum-based fault localization to identify promising repair
sites (i.e., specific positions in rules), and to apply grammar patches at these
sites whenever they satisfy explicitly formulated pre-conditions necessary
to potentially improve the grammar.

We implement and evaluate passive and active repair variants of our
approach. In passive repair, we repair against the fixed input test suite as
specification. The active repair variant takes a black-box parser for the un-
known target language or oracle that can answer membership queries. The
key extension of active repair is to incorporate some test suite enrichment,
by generating additional tests from each repair candidate and using the or-
acle to confirm the outcome of each of these tests.

We demonstrate the effectiveness of both repair variants using thirty-
three student grammars that contain multiple faults. We show that both
variants are effective in fixing real faults in these grammars. A like-for-like
comparison of both variants shows that active repair produces more high
quality repairs than passive repair.

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Foutlokalisering en Herstel vir Grammatika
(“Foutlokalisering en Herstel vir Grammatikar”)

M. Raselimo
Afdeling van Rekenaarwetenskap,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD (RW)
Maart 2023

Konteksvrye grammatikas (CFG’s) of bloot grammatikas, is wyd gebruik
om die struktuur van komplekse voorwerpe te beskryf en te kodeer. Stel-
sels dat sulke gestruktureerde voorwerpe verwerk word, staan bekend as
grammatika. CFG’s word ook gebruik vir sagteware-ingenieurstake soos
toetsing grammatika, spesifiek In sagteware-ingenieurswese word CFG’s
spesifiek gebruik in die toets van grammatika in toetssuite generering en
fuzzing. Korrekte en volledige CFG’s is egter selde beskikbaar, wat die
voordele van hierdie outomatiese tegnieke beperk. Dit is grootliks omdat
ingenieurspraktyke soos toetsing

Terwyl huidige grammatika-ingenieursbenaderings die teenwoordigheid
van kan demonstreer foute in CFG’s, óf deur statiese analise tegnieke óf di-
namies nie een van hulle kan gebruik word om die liggings van te bevestig
nie hierdie foute, nog minder herstel hulle. Die lokalisering en In hierdie
tesis spreek ons hierdie probleem aan en ontwikkel, implementeer en eva-
lueer nuwe geoutomatiseerde metodes wat vind liggings van foute in CFG’s
en herstel dit teen ’n toetssuite-spesifikasie.

Ons beskryf en evalueer die eerste spektrum-gebaseerde metode wat
daarop gemik is om te vind foute CFG’s. In sy basiese vorm neem dit as
inset ’n toetsreeks en ’n gewysigde ontleder vir die grammatika wat gram-
matikaspektra kan versamel, dit wil sê die stelle grammatika-elemente wat
in poog om die individuele toetsgevalle te ontleed, en gee as uitvoer ’n ge-
rangorde lys van verdagte elemente. Ons definieer grammatikaspektra wat
geskik is vir die lokalisering van foute op die vlak van die grammatika reëls
en by die reëls se individuele simbole, onderskeidelik. Ons wys hoe hierdie

vii

Stellenbosch University https://scholar.sun.ac.za

viii UITTREKSEL

tipe spektra kan versamel word in wyd gebruikte ontledingsinstrumente.
Ons wys ook hoe die spektra gekonstrueer kan word direk van toetsgevalle
afgelei van ’n grammatika, en hoe hierdie sintetiese spektra kan gebruik
word vir lokalisering in gevalle waar selfstandige ontleders wat die gram-
matika is nie beskikbaar nie.

Ons demonstreer kwalitatief en kwantitatief die effektiwiteit van ons
foutlokaliseringsbenadering. Ons evalueer eers ons metode oor ’n groot
aantal mediumgrootte enkelfout-CFG’s, wat ons gekonstrueer het deur fout-
saaiing uit ’n algemene oorsprong-grammatika. Op reëlvlak rangskik dit
die reëls wat die gesaaide foute bevat binne die top vyf reëls in ongeveer
40%–70% van die gevalle, en identifiseer hulle (d.w.s. identifiseer hulle
korrek as die unieke mees verdagte reël) in ongeveer 10%–30% van die ge-
valle, met aansienlik beter resultate vir die sintetiese spektra. Gemiddeld
rangskik dit die foutiewe reëls binne ongeveer 25% van alle reëls. Op item-
vlak bly ons metode merkwaardig effektief ten spyte van die groter aantal
moontlike liggings: dit rangskik tipies die gesaaide foute binne die top vyf
posisies in ongeveer 30%–60% van die gevalle, en identifiseer hulle in onge-
veer 15%–40% van die gevalle. Dit rangskik die gesaaide foute gemiddeld
binne ongeveer 10%–20% van alle posisies.

Ons evalueer verder ons metode oor CFG’s wat werklike foute bevat.
Ons wys dat ’n iteratiewe benadering gebruik kan word om een vir een veel-
vuldige foute in grammatikas wat ingedien is deur studente wat in verskeie
samestelleringenieurswese-kursusse ingeskryf is te lokaliseer en handmatig
te verwyder; in die meeste iterasies bevat die reël wat die hoogste gerang-
skik reeds ’n fout, en geen fout word buite die top vyf reëls gerangskik nie.
Ons pas uiteindelik ons metode toe op ’n groot oopbron SQLite-grammatika
en wys waar die oorspronklike weergawe afwyk van die taal wat deur die
werklike SQLite-stelsel aanvaar word.

Ons beskryf dan die eerste benadering om outomaties te herstel foute in
CFG’s: gegewe ’n grammatika wat sommige toetse in ’n gegewe toetsreeks
druip, ons transformeer die grammatika iteratief en geleidelik totdat dit alle
toetse slaag. Ons kern idee is om voort te bou op spektrum-gebaseerde
fout lokalisering te identifiseer belowende herstelpersele (d.w.s. spesifieke
posisies in reëls), en om aansoek te doen grammatika kolle op hierdie web-
werwe wanneer hulle bevredig eksplisiet geformuleer voorwaardes wat no-
dig is om die grammatika moontlik te verbeter.

Ons implementeer en evalueer passiewe en aktiewe herstel variante van
ons benadering. In passiewe herstel herstel ons teen die vaste invoertoetss-
uite as spesifikasie. Die aktiewe herstelvariant neem ’n swartboks-ontleder
vir die onbekende teiken taal of orakel wat lidmaatskapnavrae kan beant-
woord. Die sleutel uitbreiding van aktiewe herstel is om te inkorporeer ’n
mate van toetsreeksverryking, deur bykomende toetse uit elkeen te gene-
reer herstelkandidaat en die gebruik van die orakel om die uitslag van elk
van hierdie toetse te bevestig.

Stellenbosch University https://scholar.sun.ac.za

ix

Ons demonstreer die doeltreffendheid van beide herstel variante met be-
hulp van drie-en-dertig studente grammatika wat veelvuldige foute bevat.
Ons wys dat beide variante effektief is om vas te maak werklike foute in
hierdie grammatika. ’n Soortgelyke vergelyking van beide variante toon
dat aktiewe herstel meer herstelwerk van hoë gehalte lewer as passiewe
herstel.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

First, I would like to thank my supervisor, Prof. Bernd Fischer, for his guid-
ance that made this research possible.

Second, I thank my family for all the support: my mother, Mafelleng
Raselimo and sisters, Felleng Raselimo, Lineo Raselimo, Liako Tŝenoli, and
Mookho Raselimo.

Third, a special note of gratitude to Prof. Eric Van Wyk from the Univer-
sity of Minnesota, Dr. Vadim Zaytsev from the University of Twente, and
Dr. Cornelia Inggs, for examining this thesis.

Moreover, to my labmates, "professor" Dylan Callaghan, "prince" Lucas
Roos, Kevin Brand, and Proscovia Nakiranda: thanks for all the fruitful
discussions, and the air-conditioning fights.

Lastly, a shout-out to all my friends who were a huge part of my PhD
journey. The following deserve a special mention: Lintle Semoli, ’Nyane
Makara, Phuthehang Maphatŝoe, Phillip van Heerden, Imraan Badrodien,
Bohlajana Qacha, Mabatho Fooko, Ramafothole Mothobi, Relebohile Math-
aba, Moabi Mokhoro, Tŝolo Lesofe, Langa Horoto, Teboho Mochai, and
Thato Mokhothu.

xi

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

Dedications

For my mother, ’Mafelleng Raselimo

xiii

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration iii

Abstract v

Uittreksel vii

Acknowledgements xi

Dedications xiii

Contents xiv

List of Figures xvi

List of Tables xviii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Research Objectives . 5
1.3 The Proposed Solution . 6
1.4 Research Questions . 8
1.5 Summary of Results . 10
1.6 Benefits . 11
1.7 Contributions . 12
1.8 Structure of the Thesis . 13

2 Background 17
2.1 Context-Free Grammars . 17
2.2 Parsing Methods . 24
2.3 Grammar-Based Testing . 33
2.4 Spectrum-Based Fault Localization 40

3 Rule-Level Fault Localization 45
3.1 Worked Example . 46
3.2 Rule Spectra . 48

xiv

Stellenbosch University https://scholar.sun.ac.za

xv

3.3 Spectra for Recursive-descent LL Parsers 50
3.4 Spectra for Table-driven LR Parsers 51
3.5 Synthetic Spectra . 54
3.6 Evaluation . 54
3.7 Conclusion . 72

4 Item-Level Fault Localization 73
4.1 Worked Example . 74
4.2 Item Spectra . 76
4.3 Implementation . 80
4.4 Evaluation . 81
4.5 Threats to Validity . 87
4.6 Conclusion . 87

5 Automatic Grammar Repair 89
5.1 Repair Framework . 89
5.2 Symbol Editing Patches . 95
5.3 Listification Patches . 101
5.4 Language Tightening Transformations 104
5.5 Implementation . 109
5.6 Evaluation . 111
5.7 Limitations . 122
5.8 Threats to Validity . 124
5.9 Conclusion . 124

6 Related Work 127
6.1 Spectrum-Based Fault Localization 127
6.2 Automatic Program Repair . 129
6.3 Grammar-Based Test Suite Generation 131
6.4 Grammar Engineering . 134
6.5 Grammar Learning . 136
6.6 Error Recovery and Correction 138

7 Conclusions and Future Work 141
7.1 Conclusions . 141
7.2 Future Work Directions . 143
7.3 Final Remarks . 145

A CDRC Test Suite 147

List of References 149

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 An example grammar GToy in BNF format. 4

2.1 An example grammar G for arithmetic expressions 18
2.2 An equivalent re-written expression grammar. 19
2.3 Parse tree of id + id . 20
2.4 Parse trees of w = id + id * id . 20
2.5 Left recursion eliminated grammar G′. 22
2.6 A recursive descent parser implementation. 25
2.7 An expression grammar Gexpr that reflects the precedence and

associativity of operators . 26
2.8 LR(0) automaton. 29
2.9 LALR automaton. 31
2.10 An example grammar G we use to illustrate LALR parsing con-

cepts. 31

3.1 An example grammar GToy . 46
3.2 Test suite satisfying rule-coverage for GToy 46
3.3 An illustration of spectrum collection using a parse tree (left) of

w = program x = {x = (x);} .. Traversal of the non-leaf nodes
gives the set R ⊆ P shown on the right. 48

3.4 ANTLR tree walker for spectrum collection 51
3.5 Parser aspect that tracks internal calls to enterOuterAltNum. . . . 52
3.6 Results of fault seeding experiments over SIMPL grammar using

JavaCC. 58
3.7 Results of fault seeding experiments over SIMPL grammar using

ANTLR (without error correction). 59
3.8 Results of fault seeding experiments over SIMPL grammar using

ANTLR (with default error correction). 59
3.9 Results of fault seeding experiments over SIMPL grammar using

CUP. 60
3.10 Example model that generates tests from CREATE TABLE state-

ments, with hard-coded allowed values for table, column and
database names. 68

4.1 Example construction of negative item spectrum. 77

xvi

Stellenbosch University https://scholar.sun.ac.za

xvii

4.2 The comparison of item- and rule-level localization using Sym-
JavaCC . 84

4.3 The comparison of item- and rule-level localization using SymCUPshift 85
4.4 The comparison of item- and rule-level localization using SymCUPplain 86

5.1 BNF baseline grammar Gtest suitable for CUP. 96
5.2 Accuracy evaluation results for grammar repairs. 121

Stellenbosch University https://scholar.sun.ac.za

List of Tables

2.1 Table showing parse stack configurations and actions taken by a
shift-reduce parser that implements the example grammar on an
input expression id ∗ id. 26

2.2 The LALR parse table configuration for example grammar G shown
in Figure 2.10 that encodes the automaton in Figure 2.9. 32

2.3 Stack configuration and actions performed by an LALR parser
that implements an example grammar G in Figure 2.10 on an
input string w = aabb. 34

2.4 Example program spectrum. 41
2.5 SFL ranking metrics . 42

3.1 Rule spectra, suspiciousness scores, and ranks for the faulty gram-
mar version G′Toy

and rule test suite. 47
3.2 CUP parse stack when encountering the syntax error. 53
3.3 Detailed rule-level results of fault seeding experiments over SIMPL

grammars. 61
3.4 Results of iterative fault localization in student grammars and

manual repair. 65

4.1 Item spectra, suspiciousness scores, ranks, and resolved ranks
for the faulty grammar version G′Toy

and rule test suite. 75
4.2 Shift item spectra, suspiciousness scores, ranks, and resolved ranks

for the faulty grammar version G′toy and rule test suite. 79
4.3 Detailed item-level localization results of fault seeding experi-

ments over SIMPL grammars. 83

5.1 Passive repair results for student grammars. 114
5.2 Summary of results showing accuracy of the passive repair ap-

proach and the number of applied patches for each repaired gram-
mar. 116

5.3 Active repair results for student grammars. 118
5.4 Patches applied by the active repair approach for each faulty

grammar. 120

xviii

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

Grammarware [76] denotes software (including the grammars themselves)
that is intrinsically linked to an underlying formal grammar. Archetypical
examples are compilers, but grammarware is prevalent: think of JSON or
XML preprocessors, email systems, audio and video streaming software,
theorem provers, network protocol analysers, and many more. More re-
cently, we see the usage of grammars in the field of software testing; fuzzing
tools leverage grammars to encode complex inputs of their target systems
under test (SUT) [15, 141, 151, 152, 153, 163, 164, 164]. This allows these
grammar-based fuzzers to expose bugs and security vulnerabilities that lie
in deeper stages beyond the syntax analysis stage. However, correct and
complete grammars are rarely available. This can in part be attributed to
the little attention their development gets compared to "traditional" soft-
ware engineering. Lämmel [82] and Klint et al. [76] explicitly address this
issue by bridging the theoretical and engineering gaps and develop tech-
niques that treat grammars as proper software artefacts.

In this work, we take this view of regarding grammars as proper soft-
ware artefacts further. Like any other software, grammars can contain bugs,
and testing remains the mostly used method to demonstrate the presence of
bugs [40] but testing does not directly give any further information about
their location, much less about possible repairs and can thus not automati-
cally fix grammars. Grammar bugs are prevalent, even well-curated gram-
mars are no exceptions to bugs. For example, Lämmel and Verhoef [84]
found "more errors than one would expect from a language reference manual"
when analysing COBOL and Zaytsev [169] shows errors and inconsisten-
cies in language specifications of both Java [86, 87] and C#.

Traditionally, grammar testing (or grammar-based testing) has focused
almost exclusively on automatic sentence generation for testing parsers and
for debugging grammars themselves [124], i.e., finding faults in a gram-
mar which cause it to define some language other than the one intended
to. Starting with Purdom [124]’s seminal work on sentence generation from
grammars, many approaches and algorithms have been proposed that sat-

1

Stellenbosch University https://scholar.sun.ac.za

2 CHAPTER 1. INTRODUCTION

isfy different grammar coverage criteria and generate test suites with certain
characteristics [82, 83, 130, 131, 170]. Sentence generation methods typically
work under the assumption that the generative grammars are correct. How-
ever, when under- or over-approximations of the intended true language
are detected, the grammar needs to be debugged. This debugging process,
which involves fault-finding, fault understanding, and fault fixing, typically
is a primarily manual, labour-intensive and often knowledge-intensive pro-
cess.

There is some work that can under certain restrictions support manual
debugging effects. Lämmel and Zaytsev [85] propose grammar conver-
gence; a procedure that takes any two input grammars and systematically
modifies them to become structurally equivalent. Other approaches exploit
generated test suites to compare pairs of input grammars. Fischer et al.
[43] propose an approach that leverages generated test data and returns as
output matching non-terminals from both input grammars, while Madha-
van et al. [99] find counter-examples that prove non-equivalence. However,
none of these approaches can be used to debug grammars fully automati-
cally and all require human intervention.

In this thesis, we propose two novel approaches, fault localization and
automatic repair for grammars, that aid grammar developers in their debug-
ging tasks with little to no manual intervention. Our fault localization ap-
proach for grammars borrows ideas from software fault localization tech-
niques to automatically identify faulty rules in the grammar. Software fault
localization techniques [32, 158] build on testing and try to identify likely
bug locations. Spectrum-based fault localization (SFL) methods [6, 26, 69, 70,
109, 115, 157] execute the SUT over a given test suite and record coverage
information for the SUT’s individual program elements. Most SFL meth-
ods use binary statement coverage, i.e., record whether a statement has been
executed or not. A representation of this recorded coverage information is
called a program spectrum. From the spectrum, SFL methods leverage some
ranking formulas and compute a suspiciousness score for each program el-
ement. These ranking metrics differ in the number of input parameters
and thus in their score computation, but higher scores typically indicate
higher bug likelihood. We apply SFL methods to grammars with mini-
mal changes. The automatic grammar repair builds on fault localization
to identify promising repair sites and applies grammar transformations at
these sites whenever they satisfy explicitly formulated preconditions that
are necessary to potentially fix the grammar.

Automated grammar debugging approaches proposed in this work do
not only directly extend the limits of grammar testing, but also enable more
interesting application scenarios in various areas, for example, (i) teaching:
our fault localization approach has already been integrated into an auto-
mated interactive feedback system [16] for grammar development at Stel-
lenbosch University; (ii) grammar learning: our solution can substitute the

Stellenbosch University https://scholar.sun.ac.za

1.1. PROBLEM STATEMENT 3

blind search in the inner loop of genetic learning approaches [30, 149] and
potentially speed up the search; (iii) grammar migration: our repair approach
can be used to automatically fix faults that are introduced when a grammar
is migrated from one formalism into another one with different capabilities,
e.g., substitution of LL(1) based parser by a more capable PEG parser [46]
in Python 3.9.0; (iv) grammar recovery and maintenance: to ensure backward
compatibility, extension of a base grammar to capture a dialect from exam-
ples [149] can benefit from our automation.

1.1 Problem Statement

Correct and complete grammars are rarely available because they are often
overlooked as proper software artefacts [76, 82]. This is still in fact true de-
spite the growing use of grammars in popular software testing fields such
as fuzzing. Lämmel [82] refers to the state of practice of grammar devel-
opment as "grammar hacking" where proper engineering activities such as
testing play a minor role. Therefore, grammar validation tasks such as fault
localization and repair must be done manually and remain time-consuming
and knowledge-intensive.

To illustrate some issues faced in grammar hacking, consider a situation
where we are trying to develop a CUP [2] 1 grammar specification against
a small positive test suite TSToy to complement an informal description of
the target language Toy. Assume that we currently have the grammar GToy
shown in Figure 1.1.

Assume further we are faced with the following five failing tests in TSToy

program ab = { ab = ab(21); }
program ab = { ab = ab(21, 21); }
program ab = { ab = ab(21, 21, 21); }
program ab = { ab = ab((21)); }
program ab = { ab = ab((21), (21)); }

In all five cases, CUP’s syntax error messages are not that useful. They only
confirm the error location and token, but give no further information. For
example, the following is a syntax error message for the first three cases.

Error in line 1, column 24: Syntax error.
Found NUM(21), expected token classes are [].

We now need to sift through these syntax error messages and trace the fail-
ing tests back to our grammar, to identify the faulty rules and then precise
fault positions within these rules. In this case case, it is relatively straight-
forward because all failing test cases fail right after the token sequence

1CUP is a popular parser generator for Java.

Stellenbosch University https://scholar.sun.ac.za

4 CHAPTER 1. INTRODUCTION

prog → program id = block .
block → { decls stmts } | { decls } | { stmts } | { }
decls → decl ; decls | decl ;
decl → var id : type
type → bool | int
stmts → stmt ; stmts | stmt ;
stmt → sleep

| if expr then stmt
| if expr then stmt else stmt
| while expr do stmt
| id = expr
| block

expr → expr = expr | expr + expr | id (id namelist) | (expr) | id | num
namelist→ , id namelist | ε

Figure 1.1: An example grammar GToy in BNF format.

"ab (", and there is only one rule in which this sequence can occur, i.e.,

expr→ id (• id namelist)

Note that we use the •-symbol to indicate the suspected fault position, i.e.,
the error is at the second id on the right-hand side of the expr rule.

Based on this manual fault localization, we can now try to repair the fault
and fix the grammar. We first try to patch the faulty rule, by applying a
small, localized transformation, rather than to refactor the entire grammar.
Common patches include deleting, inserting, or substituting symbols. The
basic idea is to try to modify the grammar, so it consumes the bad tokens
{ 0 , (} (on column 24) all failing tests. We are faced with another challenge
here; we have to identify a symbol whose first set includes both bad tokens,
and we decide to substitute id with expr because derivations through expr
can start with both num and ((see Section 2.1 for formal definitions).

We then validate this patch, i.e., generate a CUP parser from the patched
grammar and run it over the test suite. Here, the patch turns out to be a
partial repair only: it does not introduce any new test failures but does not
resolve all previous failures, and we are left with three failing test cases:

program ab = { ab = ab(21, 21); }
program ab = { ab = ab(21, 21, 21); }
program ab = { ab = ab((21), (21)); }

In the first two cases, we get the same syntax error messages as before, with
the new error locations showing that we indeed made some progress on
these two tests as well:

Stellenbosch University https://scholar.sun.ac.za

1.2. RESEARCH OBJECTIVES 5

Error in line 1, column 28: Syntax error.
Found NUM(21), expected token classes are [].

This indicates that the patched grammar still contains another occurrence
of id that needs to substituted, i.e.,

namelist→ , • id namelist | ε

Patching the first namelist-rule accordingly resolves the last three test
failures. Both patches together thus constitute a full repair that fixes the
grammar.

The example above illustrates that manual debugging efforts are tedious.
The parser does not help much, since it assumes the grammar is correct and
the input is wrong. Its syntax error messages are thus not necessarily useful
and can sometimes be very complicated, e.g., convoluted due to the cas-
cading error problem as a result of error recovery attempts by the parser.
In order to tackle these issues, we need approaches that automate fault lo-
calization and subsequent repair attempts. Such automated debugging ap-
proaches have some benefits:

• They increase developer productivity, since they reduce the need for
the manual debugging of grammars.

• They increase the usability of grammar-based testing methods, since
they increase the availability of appropriate grammars.

• They leverage human insight, since they take advantage of approx-
imate grammars written by developers, and automatically improve
them.

1.2 Research Objectives
The overarching goal of this research is to automatically find and repair
bugs in grammarware. More specifically, we aim to develop and evaluate
an approach to lead a grammar developer to the location of the bug in a
context–free grammar using spectrum-based fault localization (SFL) tech-
niques and to develop and evaluate an approach to automatically repair the
localized grammar bugs. While there are different fault localization meth-
ods, we have identified SFL techniques as the most suitable candidate be-
cause they can be easily adapted to our domain. Our research has the fol-
lowing specific objectives.

1. To extend the framework of spectrum-based fault localization to context-
free grammars.

2. To extend common parser generator tools to automate grammar spec-
tra extraction.

Stellenbosch University https://scholar.sun.ac.za

6 CHAPTER 1. INTRODUCTION

3. To evaluate the efficacy of the fault localizer against different kinds of
faults, in particular

• artificial faults introduced by mutation of the rules of the gram-
mar, i.e, grammars with single and well-defined faults;

• faults on grammars written by students; and

• faults in real-world production grammars, i.e., grammars with
unknown and multiple faults.

4. To investigate, develop and evaluate different grammar repair opera-
tions, specifically, to develop grammar refactoring operations such as
splitting and joining non-terminal symbols, deletion of rule alterna-
tives, pulling up and pushing down of non-terminals.

1.3 The Proposed Solution
In this section, we provide context for our realization of both spectrum-
based fault localization and automatic repair for grammars approaches. We
describe how both approaches were developed, and we empirically evalu-
ate them under different fault models and different test suites.

1.3.1 Spectrum-based Fault Localization for Grammars

In Chapters 3 and 4, we describe our adaptation of the spectrum-based fault
localization techniques in the context of grammars. Our key insight is that
the SFL framework applies with minimal changes. We only need to replace
the notion of executed program elements by grammar elements (i.e., rules
and items) involved in the derivation of a word w. We define grammar
spectrum at two levels of granularity, rule spectra and the fined-grained item
spectra.

Rule-level Localization

In Chapter 3, we first describe and evaluate localization at the level of gram-
mar rules. We view a rule to possibly contain a fault if it is used in a deriva-
tion of a word w that is successfully consumed by the parser that imple-
ments the grammar but is outside the true language (which may be de-
scribed by a different grammar), or conversely, if the parser rejects w but it is
within the true language. We therefore formally fix the notion of rule spec-
tra as the representation and summary of the grammar rules which have
been (partially) used in an attempt to parse inputs. We describe rule spectra
extraction for both LL and LR parsers. Extraction attempts in LR parsers are,
however, not straightforward, especially in the identification of partially ap-
plied rules in cases where an LR parser detects syntax violations and thus

Stellenbosch University https://scholar.sun.ac.za

1.3. THE PROPOSED SOLUTION 7

fails to perform full reductions that mark a successful rule application. In
such cases, we analyze the parse stack and recover partially applied rules
from corresponding states left on the parse stack at the time of syntax error.

In practice, the extraction of grammar spectra requires runtime sup-
port from the implementing parser, which maintains a full record of ap-
plied rules. Parsers generated by ANTLR [118] already provide this support
through some extensions, but parsers generated by CUP [2] or JavaCC [3]
do not. We therefore extend CUP and JavaCC sources to generate parsers
with the spectral logging support.

We also introduce a "flipped" version of rule level localization; we con-
struct synthetic grammar spectra directly from the test cases generated from
the grammar. This is useful in the case of black-box parsers, which cannot
be easily instrumented to log information for SFL. We use these synthetic
grammar spectra to localize deviations between the grammar and the lan-
guage accepted by the SUT.

Item-level Localization

In Chapter 4, we introduce a refinement of rule localization that allows us
to localize faults more precisely, at the level of individual grammar symbols
in the corresponding rule. The main difference here is that we define and
evaluate spectra over items, i.e., rules with designated positions. We show
that this method of spectrum collection improves over rule-level localiza-
tion. We exploit the fact that the designated position marks the boundary
between the part of a rule that has been successfully processed and the part
that awaits further processing; hence, we can assume that the fault is at the
symbol at the right of the designated position.

We collect item spectra for both LL and LR parsers; in both cases, the log-
ging is carried out on shift operations implicitly (in LL) or explicitly (in LR).
In the LL case, the logger captures the corresponding item when the parser
successfully consumes a token or returns from a function call that imple-
ments the non-terminal in the rule. In LR cases, we introduce two slightly
different approaches. The first approach can be thought of as expanding of
the rule spectra: all items of successfully reduced rules are collected; on en-
countering a syntax error, we extract and add all items from the states left
on the parse stack. In the second approach, we only target the shift opera-
tion and add all items associated with a state whenever that state is pushed
onto the parse stack. We call these shift item spectra. This approach yields
larger spectra than the first approach, but this apparent loss of precision in
the spectrum collection does not necessarily translate into a worse localiza-
tion performance, because the metrics are based on the spectral differences
and compute a quotient between passing and failing counts.

Stellenbosch University https://scholar.sun.ac.za

8 CHAPTER 1. INTRODUCTION

1.3.2 Automatic Grammar Repair

In Chapter 5, we introduce our second main contribution, a fully automated
grammar debugging procedure. Our main goal here is to automate the man-
ual find-and-fix cycle that we illustrated earlier. We describe an iterative
generate-localize-transform approach that induces patches that sufficiently
approximate the intended target language. This approach constructs a re-
paired grammar G′ from an initial user-provided test suite TS and faulty
grammar G, optionally generates test suites TSi from each candidate vari-
ant of Gi, evaluates the generated tests via a teacher (or oracle), uses the
results to identify repair sites, and finally applies transformations to these
sites. We evaluate two configurations of our repair approach: the passive
repair approach that we described in our paper [129], fixes the faulty in-
put grammar G over a fixed test suite; and an active repair approach which
uses a parser of the unknown target language that can answer membership
queries and serves as the oracle in the sense of Angluin’s [11] query model.
The key extension is that we introduce a test suite enrichment, where we ju-
diciously generate (positive and negative) tests from repair candidates and
use the oracle to obtain the expected outcome.

Our repair approach is informed by two basic principles: the competent
programmer hypothesis [36] ("most programmers are competent enough to
create correct or almost correct source code") and Occam’s razor ("entities
should not be multiplied without necessity"). In our context, the former
means that we can reasonably hope to construct G′ from G through a se-
quence of patches, while the latter is reflected by the fact that the repair
uses the vocabulary and the structure of the original grammar, and mini-
mizes the number of applied patches.

1.4 Research Questions

We evaluate our approaches under a number of different scenarios, includ-
ing the use of different parsing techniques, test suites, and ranking metrics.
Overall, we are trying to answer three main research questions, which we
further break down into more specific sub-questions that we answer by a
series of different experiments.

RQ1: How effective is our spectrum-based fault localization approach in
finding faults in grammars?

In the first set of experiments, we evaluate our method for rule-level local-
ization over a large number of medium-sized single fault grammars, which
are constructed from a common grammar by fault seeding. Note that fault
seeding is widely used in SFL evaluation (e.g., [5, 156]) because it produces

Stellenbosch University https://scholar.sun.ac.za

1.4. RESEARCH QUESTIONS 9

a large number of faulty subjects with known error locations. This is the
largest set of experiments in our evaluation.

First, as a baseline, we investigate the effectiveness of rule-level fault lo-
calization. We analyze in detail whether the different applied parsing tech-
niques, test suites, and ranking metrics have an effect on the effectiveness
of the technique.

RQ1a How effective are fault localization techniques based on rule spec-
tra in identifying seeded single faults in grammars?

Then, we investigate the effectiveness of synthetic spectra.

RQ1b How effective are fault localization techniques based on synthetic
spectra in identifying seeded single faults?

In the second set of experiments, we look at grammars submitted by
students enrolled in compiler engineering courses. Such grammars contain
real and often multiple faults; however, SFL is based on a single fault as-
sumption, and SFL methods can be misled by interactions between multiple
faults [7, 162]. We investigate whether this is the case here.

RQ1c How effective are fault localization techniques in identifying real
faults in grammars that possibly contain multiple faults?

In the final experiment of rule-level evaluation, we address the scalabil-
ity of our approach by applying it to a large, production–quality grammar,
specifically the ANTLR4 SQlite grammar.

RQ1d Can our approach remain effective for large grammars?

RQ2: Does the use of item spectra improve the localization accuracy?

Next, we evaluate whether our method remains effective when we switch to
item spectra for a more precise localization of faults at the level of individual
symbols, and whether the switch from rule spectra does indeed improve its
accuracy.

RQ2a How effective are fault localization techniques based on item spec-
tra in identifying seeded single faults in grammars at the level of
individual symbols?

RQ2b Does the use of item spectra improve the localization accuracy?

Stellenbosch University https://scholar.sun.ac.za

10 CHAPTER 1. INTRODUCTION

RQ3: Can we use fault localization to drive automatic repair of faults in
grammars?

We build on fault localization to identify repair sites and evaluate our ap-
proach with grammars that contain real and multiple faults. We first evalu-
ate the efficacy and effectiveness of our passive repair approach.

RQ3a How effective is our proposed passive repair approach in fixing
faults in grammars?

We then evaluate the efficacy and effectiveness of our active repair approach,
which takes a boolean valued oracle O which answers membership queries to
test cases generated from each candidate patch.

RQ3b How effective is our proposed active repair approach in fixing
faults in grammars?

Next, we do a like-for-like comparison of the passive repair approach
that we described in our SLE paper [129] and the active repair approach.

RQ3c Does the active repair approach induce better fixes than the passive
repair approach?

1.5 Summary of Results

Spectrum-based fault localization. We qualitatively and quantitatively eval-
uate our method under a number of different fault models and scenarios,
including the use of different parsing techniques, test suites, and ranking
metrics. Our method typically ranks the rules containing the seeded faults
within the top five grammar rules for about 40%–70% of the grammars, de-
pending on the applied parsing technique, test suite, and ranking metric.
It pinpoints them (i.e., correctly identifies them as unique most suspicious
rule) in about 10%–30% of the cases. On average, it ranks the faulty rules
within about 25% of all rules, and in less than 15% for a very large test suite
containing both positive and negative test cases. Our method pinpoints far
fewer of the seeded faults down to the exact symbol position, or even ranks
them within the top five positions, due to the larger number of possible lo-
cations and corresponding larger ties (i.e., groups of equally suspicious lo-
cations). However, a simple tie-breaking strategy that prefers the right-most
position amongst the rules in a tie proves remarkably effective: it typically
ranks the seeded faults within the top five positions in about 30%–60% of
the cases, and pinpoints them in about 15%–40% of the cases. On average,
it ranks the seeded faults within about 10%–20% of all positions. The spe-
cialized symbol-level localization also significantly outperforms a simplistic

Stellenbosch University https://scholar.sun.ac.za

1.6. BENEFITS 11

extension of the rule-level localization, where all positions within a rule are
given the same score.

Second, we look at grammars submitted by students enrolled in com-
piler engineering courses. Such grammars contain real and often multiple
faults; however, SFL is based on a single fault assumption, and SFL meth-
ods can be misled by interactions between multiple faults [7, 162]. Our
method remains effective in this more difficult situation. We use an iterative
"one-bug-at-a-time" approach originally proposed by Jones et al. [70] in the
context of fault localization in programs to localize and manually remove
multiple faults one by one; in most iterations, the top-ranked rule already
contains a fault, and no fault is ranked outside the top five ranked rules.

Finally, we address the scalabilty of our method, and use it to identify
four locations in an open-source SQLite grammar [74] where it deviates
from the language accepted by the actual SQLite system [4]. Here, we con-
struct synthetic grammar spectra directly from the test cases derived from
the grammar, and use the SQLite system as a black box to collect the re-
quired pass/fail information.
Automatic Grammar Repair. We have successfully used gfixr to repair 33
grammars that contain multiple, real faults. Passive repair finds full fixes
in all but four cases, where it returns partially repaired grammar variants
after 150 iterations. We show that even these partially repaired variants
have improved in quality over their corresponding faulty input grammars.
We also show that passive repair produces grammars that generalize well
to new unseen tests that were generated from target grammars (i.e., the
fixed grammars improved the recall score). However, some of these re-
paired grammars are too permissive; hence they over-generalize beyond the
target language. We use the precision computation to measure this over-
generalization, where we calculate the proportion of tests generated from
the output repair, in which the output grammar and the target grammar
produce the same result.

We develop and evaluate active repair to address this over-generalization
in passive repair. We show that the test suite enrichment introduced by ac-
tive repair produces repairs less prone to the over-generalization problem.
The active algorithm achieves 100% precision in about half of the input
grammars. It also produces high quality patches that capture the original
intent of the grammar. It achieves 100% F1 score (i.e., combined measure
of quality calculated as the harmonic mean of the corresponding recall and
precision) in eight grammars and none in the passive case.

1.6 Benefits
Our approaches work at a higher level of abstraction than generic SFL and
automatic program repair (APR) approaches. For fault localization, we get

Stellenbosch University https://scholar.sun.ac.za

12 CHAPTER 1. INTRODUCTION

results in domain-specific terms (i.e., rules or symbols within these rules),
instead of parser statements. This offers several advantages. First, it simpli-
fies any subsequent repair attempts – grammar writers can directly use our
results and do not need to manually trace back from the parser’s implemen-
tation to the grammar’s rules. Second, it increases the localization precision
because it discards all aspects of the parser’s internal bookkeeping and error
handling code that could impact the localization process if generic program
spectra were used. Third, it can also be meaningfully applied when the
parser uses a table-driven implementation and there is no direct representa-
tion of the individual rules as executable code; this is typically the case for
LR parsers.

Finally, for grammar repair, we can, in principle, use APR tools on the
parser code that implement the grammar. However, our approach presents
several advantages. Fixing the parser code directly is impossible for table-
driven implementations, and induces much larger fix spaces for recursive
descent parsers, due to the lower level of abstraction. Moreover, it does not
help in applications where the grammar itself must be fixed, e.g., grammar-
based fuzzing.

1.7 Contributions

The main contribution of this PhD thesis is the development of two auto-
mated software language validation tasks that were previously to be per-
formed manually.
Fault Localization. We present the first method to localize faults in a context-
free grammar, both at the level of rules and at the level of individual sym-
bols within the rules. We then describe how common parsing generator
tools can be extended to provide useful information necessary for fault lo-
calization. In applications where standalone parsers cannot be extended or
instrumented to extract such information, we show how we can exploit test
cases generated from a grammar to derive the required logging for fault lo-
calization. We demonstrate the effectiveness of this method over grammars
with seeded faults, as well as grammars from student submissions from
compiler engineering courses that contain real and multiple faults. We also
show that our method remains effective even for larger production-quality
grammars.
Grammar Repair. The second main contribution is the proposal of the first
method aimed at fixing faults in context-free grammars. At its core, this
method involves the following steps:

• localization: we build our fault localization method to identify promis-
ing repair sites (i.e., specific positions in rules);

Stellenbosch University https://scholar.sun.ac.za

1.8. STRUCTURE OF THE THESIS 13

• transformation: we apply small-scale grammar transformations or patches
at these sites whenever they satisfy explicitly formulated pre-conditions
(see Section 5.2 to Section 5.4 for details) that are necessary to poten-
tially improve the grammar;

• control: we alternate between localization and transformation, as they
reinforce each other and iterate until we find a fix. We use a priority
queue to keep improving the most promising candidate grammars.

We detail ingredients necessary to realize this automatic repair method. We
describe two repair variants, the passive repair variant in which we repair
against a static test suite specification and the active repair variant, which
exploits a membership oracle and test suite enrichment where we gener-
ate test suites from each generated repair candidate and use the oracle to
provide the expected outcome. We demonstrate the effectiveness of both
settings over grammars with real faults. We finally compare the two repair
configurations.

1.8 Structure of the Thesis
In Chapter 2, we fix the basic grammar notations that we use in the the-
sis and give necessary background for different parsing mechanisms and
spectrum-based fault localization. We describe and evaluate our fault local-
ization method that works at the granularity of grammar rules in Chapter 3.
The item-level fault localization method’s description and evaluation follow
in Chapter 4. Chapter 5 addresses the grammar repair problem. We de-
scribe two repair algorithms and our realization of the repair framework in
the gfixr tool. We then evaluate the two algorithms and discuss current chal-
lenges and limitations of the approach. We discuss related work in Chap-
ter 6. We conclude and give plans for future work in Chapter 7.

Stellenbosch University https://scholar.sun.ac.za

14 CHAPTER 1. INTRODUCTION

Declaration of Joint Work
The main contributions of this thesis were partially reported in the follow-
ing publications:

1. Moeketsi Raselimo and Bernd Fischer. 2019. Spectrum-Based Fault
Localization for Context-Free Grammars. In Proceedings of the 12th
ACM SIGPLAN International Conference on Software Language En-
gineering (SLE ’19), October 20 – 22, 2019, Athens, Greece. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3357766.
3359538.

2. Moeketsi Raselimo and Bernd Fischer. 2021. Automatic Grammar
Repair. In Proceedings of the 14th ACM SIGPLAN International Con-
ference on Software Language Engineering (SLE ’21), October 17 –
18, 2021, Chicago, IL, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3486608.3486910.

The investigation, development, and evaluation of the concepts in these pa-
pers were done under close supervision of Bernd Fischer. However, this
thesis describes further substantial extensions of the work reported in these
papers, namely the item-level localization and the active repair approach,
that are as yet unpublished.

We adapt concepts and other preliminary materials described in Chap-
ter 2 from papers co-authored with other collaborators. The definition of
negative test suite construction algorithms in Section 2.3.3 was done in col-
laboration with Jan Taljaard and Bernd Fischer in our paper

• Moeketsi Raselimo, Jan Taljaard, and Bernd Fischer. 2019. Break-
ing Parsers: Mutation-Based Generation of Programs with Guaran-
teed Syntax Errors. In Proceedings of the 12th ACM SIGPLAN In-
ternational Conference on Software Language Engineering (SLE ’19),
October 20 – 22, 2019, Athens, Greece. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3357766.3359542. ACM Distin-
guished Paper Award.

We also use test suite construction methods that were introduced in our
paper

• Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and
Bernd Fischer. 2020. Grammar-Based Testing for Little Languages:
An Experience Report with Student Compilers. In Proceedings of the
13th ACM SIGPLAN International Conference on Software Language
Engineering (SLE ’20), November 16 – 17, 2020, Virtual, USA. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/3426425.
3426946.

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3357766.3359538
https://doi.org/10.1145/3486608.3486910
https://doi.org/10.1145/3357766.3359542
https://doi.org/10.1145/3426425.3426946
https://doi.org/10.1145/3426425.3426946

1.8. STRUCTURE OF THE THESIS 15

I worked closely with Phillip van Heerden to design the experimental frame-
work used in the evaluation there, and contributed draft versions of the
corresponding sections of that paper.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Background

This chapter gives the background for the concepts described in subsequent
chapters. In Section 2.1, we present preliminary material related to context-
free grammars (CFGs), we describe the parsing technologies, over which
our approaches were evaluated, we then describe test suite construction
from CFGs (see Section 2.3) and finally introduce the spectrum-based fault
localization framework in Section 2.4.

2.1 Context-Free Grammars
The previous chapter introduced context-free grammars (or simply gram-
mars) and highlighted their importance in enabling several applications;
CFGs define the syntax of most programming languages and can be ex-
ploited (by fuzzers) to capture the complex input characteristics of some
software systems. In this section, we take a closer look at CFGs.

CFGs can be seen as limited rule-based replacement systems in which
some symbols can be replaced by other symbols to form strings. Symbols
which cannot be replaced are called terminal symbols. Non-terminal sym-
bols are syntactic variables which can be replaced by other symbols. CFGs
also contain a special non-terminal called the start symbol and productions
(or rules) which define the replacement relation, i.e., define the interaction
between terminals and non-terminals in forming strings. Before we fix the
notational conventions that we adapt in our work, it is important that we
look into the structure of productions. Each production consists of:

(a) a left-hand side non-terminal called the head or rule name;

(b) the symbol→which separates the left-hand side and the right side; and

(c) the body on the right-hand side, which contains zero or more terminals
and non-terminals. This is also known as the definition of the produc-
tion. The character "|" is often used to denote several alternative defini-
tions of the same head.

17

Stellenbosch University https://scholar.sun.ac.za

18 CHAPTER 2. BACKGROUND

Conventionally, productions from the start symbols are listed first. We
use the grammar G for arithmetic expressions shown in Figure 2.1 below as
a running example to illustrate concepts we have already introduced and
some coming later in the chapter.

S→ E
E→ E +E | E *E | (E) | id

Figure 2.1: An example grammar G for arithmetic expressions

Adapted Notations. Formally, a CFG is a four-tuple G = (N, T, P, S) with
N ∩ T = ∅, V = N ∪ T, P ⊂ N × V∗, and S ∈ N. We follow the notation
in [10] and call S the start symbol and use the meta-variables A, B, C, . . . for
non-terminals N, a, b, c, . . . for terminals T, X, Y, Z for grammar symbols V,
p, q, r for productions or rules P, w, x, y, z for words over T∗, and α, β, γ, . . . for
phrases over V∗, with ε for the empty string and |α| for the length of α. We
write A → γ for a rule (A, γ) ∈ P and PA = {A → γ ∈ P} for the rules for
A. As usual, we assume that G is augmented, i.e., PS = {S→ ⊣ S′ ⊢ }, and S,
⊣ , and ⊢ occur in no other production. ⊣ and ⊢ denote the start and end
of input, respectively.

Using this notational convention, for the grammar shown in Figure 2.1,
we get:

• N = {S, E}

• T = { + , * , (,) , id }

• P = {S→ E, E→ E +E, E→ E *E, E→ (E) , E→ id }

• S as the start symbol.

We call left(R) = R ∪ {B → β ∈ P | A → Bα ∈ R} the left expansion of
R ⊆ P and use closure(R) to denote the closure of R under left expansion.
Note that this mirrors the item set closure operation used in the construction
of LR parsers (see Section 2.2.2).

The notation introduced above is sometimes not used when grammars
are large and readability and reusability play an important role, as is the
case for programming language grammars. The example grammar in Fig-
ure 1.1 and more examples in later chapters follow a much more expressive
typographical convention and depart from the single letter meta-symbols.
We can re-write G as shown in Fig. 2.2

Here, terminal symbols are typeset in bold typewriter font and non-
terminals in italics. Also, where appropriate, we adopt extended Backus-
Naur Form (EBNF) operators ∗, + and ?. We write A → α∗ for A → αA | ε,
A→ α+ for A→ αA | α and A→ α? for A→ α | ε.

Stellenbosch University https://scholar.sun.ac.za

2.1. CONTEXT-FREE GRAMMARS 19

start→ expr
expr → expr + expr | expr * expr | (expr) | id

Figure 2.2: An equivalent re-written expression grammar.

2.1.1 Derivations and Parse Trees

Derivations. The process of forming a string w from the start rule S where
at each step a non-terminal is replaced by the body of its definitions is called
a derivation for w from S. We use the symbol⇒ to denote a replacement of a
non-terminal by its definition. For example, for w = id + id from the exam-
ple grammar G in Figure 2.1, we have the following sequence of derivation
steps.

S⇒ E + E⇒ id + E⇒ id + id

More generally, we use αAβ ⇒ αγβ to denote that αAβ produces αγβ by
application of the rule A → γ ∈ P and use ⇒∗ for its reflexive-transitive
closure, which simply reads as "derives in zero or more steps". This enables
us to shorten the derivation of id + id to just S ⇒∗ id + id . We write
⇒R if A → γ ∈ R ⊆ P. We call a phrase α a sentential form if S ⇒∗ α.
Note that sentential forms may contain both terminals and non-terminals.
At each step in the derivation, we have many choices of the order of the
non-terminals to expand in a sentential form α. We consider in particular
two types of derivations:

1. In a left-most derivation, we expand at each derivation step the left-
most non-terminal in a sentential form. Hence, φ⇒lm ψ is a left-most
derivation step, if there are u, σ, τ with φ = uAτ, A → α ∈ P, and
ψ = uατ. The derivation for the string id + id shown above is a left-
most derivation, and we denote this by S⇒∗lm id + id .

2. In a right-most derivation we expand, at each derivation step, the right-
most non-terminal in a sentential form. Hence, φ ⇒rm ψ is a right-
most derivation step if there are σ, u, τ with φ = σAu, A → α ∈ P,
and ψ = σαu. We can re-order the derivation steps of the derivation
above to give the right-most derivation as follows:

S⇒rm E + E⇒rm E + id ⇒rm id + id

We denote this by S⇒∗rm id + id .

We use ∆ for derivations. For a derivation ∆ = α0 ⇒p1 α1 ⇒p2 . . . ⇒pn

αn, we use rules(∆) =
⋃

i {pi} to denote the set of applied rules.
The yield of α is the set of all words that can be derived from it, i.e.,

yield(α) = {w ∈ T∗ | α ⇒∗ w}. The language L(G) generated by a grammar
G is the yield of its start symbol, i.e., L(G) = {w ∈ T∗ | S ⇒∗ w}. The

Stellenbosch University https://scholar.sun.ac.za

20 CHAPTER 2. BACKGROUND

S

E

E

id

+E

id

Figure 2.3: Parse tree of id + id .

S

E

E

E

id

*E

id

+E

id

S

E

E

id

*E

E

id

+E

id

Figure 2.4: Parse trees of w = id + id * id .

derivation of w = id + id illustrated above shows that w is in the yield of
the start symbol S and therefore, id + id ∈ L(G) .

Parse Trees. A parse tree (also called a derivation tree or concrete syntax tree)
is a tree data structure that represents a derivation (more precisely, a set of
derivations). It typically has the start symbol as root. It has terminal sym-
bols at the leaf nodes, and at each non-leaf node represents an application
of a production whose subtree is rooted by the head of that production and
each symbol in the body of the production as child of the subtree. Figure 2.3
shows the derivation tree for the expression id + id .

We call a grammar ambiguous if it allows more than one parse tree for
some input string. Our example grammar G allows two parse trees, shown
in Figure 2.4 for a string w = id + id * id .

2.1.2 Prefixes and Bounded Derivations

Sometimes we cannot construct a derivation for a complete word, only for
an initial fragment. More specifically, we call u a viable k-prefix of a word
w = uv if |u| ≤ k and S⇒∗ uv′ for a v′ ∈ T∗, and denote this by u ⪯k w. We
call a viable k-prefix u ⪯k w maximal if there is no a ∈ T such that ua ⪯k+1 w.
Hence, w ⪯|w| w iff w ∈ L(G) and, conversely, if the maximal viable prefix u
has length k < |w| then w has a syntax error at position k + 1. For example,

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

2.1. CONTEXT-FREE GRAMMARS 21

given the expression grammar G in Fig. 2.1, u = id + is the maximal viable
prefix of uv′ = id + * , because for v′ = id , S ⇒∗ uv′ while id is a non-
maximal viable prefix.

A derivation ∆ = S ⇒∗ ω is k-prefix bounded for w if (i) ω ⇒∗ w and
(ii) for any derivation step αAβ ⇒ αγβ in ∆ we have α ⇒∗ u and αAβ ⇒∗
uv = w imply a) |u| < k or b) |u| = k and uβ ⇒∗ w. We denote this by
S k⇒ ∗w ω. Intuitively, this means that a k-prefix bounded derivation for w
never expands a non-terminal symbol whose yield in w will ultimately start
only beyond a prefix of length k. S k⇒∗w ω is maximal if ω = uα for |u| = k,
i.e., if we have applied all rules in the k-prefix. Consider for example the
derivation

∆ = S⇒ E + E⇒ (E) + E⇒ (E * E) + E⇒ (id * E) + E = ω

and w = (id * id) + id . ∆ is k-prefix for w for k=2 because the yield
of all non-terminal symbols expanded in ∆ starts on or before w’s second
position; note that the end position does not matter. Note also that ∆ is
maximal for k=2 because the first two elements of w contain no non-terminal
symbols (In fact ∆ is also maximal for k=3 but not for k=4). Note that for any
w = uv /∈ L(G) with maximal viable k-prefix u, there exist a not necessarily
unique w′ = uv′ ∈ L(G) and corresponding maximal k-prefix bounded
derivation S k⇒ ∗

w′ uXα for w′. We call any such ∆ a maximally viable k-
prefix bounded derivation for w with frontier X and define its frontier rules
as closure(PX). We call the implied v′ its right completion. For example, for
w = (id * +) /∈ L(G), with the maximally viable 3-prefix u = (id * ,
we can select v′ = id) and the corresponding maximal 3-prefix bounded
derivation ∆ = S ⇒ (id * E, which has the frontier symbol E, with the
frontier rules {E→ E +E, E→ E *E, E→ (E) , E→ id }.

2.1.3 Left Recursion Elimination and Left Refactoring

In this section, we introduce certain grammar properties that allow (or pre-
vent) the application of some practical parser implementations. For exam-
ple, most top-down (see Section 2.2.1) parsers cannot handle left–recursive
or ambiguous grammars. To circumvent this, there exist techniques to elim-
inate left recursion in a grammar, which guarantee that the transformed
grammar (without left recursion) still describes the same language. How-
ever, transformations to eliminate ambiguity do not generalize and thus do
not offer such guarantees.

Left Recursion Elimination

Generally, a grammar is left-recursive if it has a non-terminal A such that
there is a derivation of a sentential form that uses itself as the leftmost sym-
bol, i.e., we have A⇒+ Aα for some phrase α.

Stellenbosch University https://scholar.sun.ac.za

22 CHAPTER 2. BACKGROUND

Direct Left Recursion. A grammar contains a direct (or an immediate) left
recursion if there exists a production of the form A → Aα for some phrase
α. Direct left recursion can be easily eliminated using the following trans-
formations. We assume we have the productions.

A→ Aα1 | Aα2 | · · · | Aαm | β1 | β2 | · · · | βm

where no βi begins with A and αi ̸= ε. We replace the A-productions by

A → β1A′ | β2A′ | · · · | βm A′

A′→ α1A′ | α2A′ | · · · | αm A′ | ε

where A′ is a new non-terminal symbol.
This technique is sufficient for all grammars with immediate left recur-

sion only. For example, the expression grammar shown in Figure 2.1 can be
transformed using this same technique to produce the grammar in Figure
2.5.

S → E
E → TE′

E′→ + TE′ | ε

T → FT
′

T′→ * FT′ | ε
F → (E) | id

Figure 2.5: Left recursion eliminated grammar G′.

However, indirect left recursion presents different challenges that we ad-
dress below.
Indirect Left Recursion. A grammar contains indirect left recursion if it con-
tains rules of the form

A0 → β0A1α0
A1 → β1A2α1
. . .
Am→ βm A0αm

where each βi can derive the empty string and the αi are arbitrary sequences
of terminals and non-terminals. Then the following derivation exposes the
left recursion

A0 ⇒ β0A1α0 ⇒∗ A1α0 ⇒ β1A2α1α0 ⇒∗ · · · ⇒∗ A0αm . . . α1α0.

We can systematically remove all recursion using the algorithm described
by Aho et al. [10, page 212, Section 4.3.3]. The algorithm is guaranteed to re-
move all left recursion if the grammar does not allow cycles (i.e., derivations
of the form A⇒∗ A).

Stellenbosch University https://scholar.sun.ac.za

2.1. CONTEXT-FREE GRAMMARS 23

Left Factoring

Another transformation that is useful is left factoring. The need for left factor-
ing arises when the choice among A-productions is not clear because they
have a common prefix. A-productions have a common prefix if they are of
the form, A → αβ1 | αβ2 | · · · | αβm. Hence, it is not immediately clear
which alternative of A to pick in derivation. In the left-factored version of
the grammar, the A-productions are replaced by A → αA′, A′ → β1 | β2 |
· · · | βm, where A′ is a new non-terminal symbol as above. This version
describes the same language.

2.1.4 Grammar Predicates

In this section, we introduce functions over grammars that simplify the for-
mulation of parsing algorithms; they ensure correct parsing decisions and
are invoked by most error recovery algorithms when parsers try to recover
from syntax errors.

We call α nullable if ε ∈ yield(α). We define the first set of a phrase α
as the set of all terminal symbols a ∈ T that can begin strings derived
from α. We write first(α) = {a | α ⇒∗ aβ}. Its reverse, the last set of
α comprises of terminal symbols that can end strings derived from α, i.e.,
last(α) = {a | α ⇒∗ βa}), We also define the follow set of symbol X as the
set of all terminal symbols that can appear immediately on the right hand
side of X in some phrase at some during the derivation. We formally write
follow(X) = {a | S ⇒∗ αXaβ}. The precede set of a symbol X, inversely is
the set of all terminals that can appear immediately before X in some sen-
tential form, i.e, precede(X) = {a | S⇒∗ αaXβ}.

For the augmented version of our example grammar G in Figure 2.1 we
get:

• first(S) = first(E) = {(, id};

• last(S) = last(E) = {), id};

• precede(S) = {⊣};

• follow(S) = {⊢};

• follow(E) = {⊢, + , * ,) };

• precede(E) = {⊣, + , * , (}.

These algorithms are usually implemented by fix-point computations.

Stellenbosch University https://scholar.sun.ac.za

24 CHAPTER 2. BACKGROUND

2.2 Parsing Methods
Parsing, in its broadest sense, is the process of searching for derivations.
Parsing algorithms can be summarized in three classes that search (i) ex-
haustively; (ii) for left-most derivations; and (iii) for right-most derivations.
In this thesis, we only discuss parsing methods that employ left- and right-
most derivation search. Since left-most derivations derive the input from
the start symbol, the parsing strategies that find these left-most derivations
are also called top-down parsing methods. Analogously, we have bottom-up
parsing strategies that reduce the input to the start symbol.

2.2.1 Top-Down Parsing

Top-down parsers construct parse trees for input strings, starting from the
start symbol (root) and creating nodes in a depth-first fashion, working their
way down until the entire string is processed. The key challenge is to de-
termine, at each parsing step, the A-production to be applied to expand a
non-terminal A. The grammar predicates we introduced in Section 2.1.4 are
typically used by a top-down parser in these circumstances, as we will see
later in this section.

One class of top-down parsers that are of special interest are predictive
parsers which are typically used for parsing grammars that belong to the
LL(k) family grammars. These parsers select the correct A-production by
looking ahead at the input string for k symbols. The first "L" in LL(k) means
that these parsers read the input from left to right while searching for left-
most derivations (the second "L"). The "k" is the number of lookahead sym-
bols at each parsing step to make parsing decisions. The most common
value of k is 1.

Ambiguous grammars and grammars that are left-recursive are not LL(k)
for any value of k. Modern parsing tools, in particular, ANTLR [118], gener-
ate parsers that use the more powerful LL(∗) [119] and adaptive-LL(∗) [120]
algorithms with unbounded lookahead. These algorithms enable ANTLR
to handle grammars with direct left recursion and ambiguous grammars,
although grammars with indirect left recursion are rejected by ANTLR.

However, we restrict our discussion to just LL(1) parser implementa-
tions, since this is sufficient in understanding more advanced and modern
top-down approaches. We look into the most popular approach to imple-
menting predictive parsers; the recursive descent parsing strategy that is
typically employed in hand-rolled parsers. More top-down parsing con-
cepts are discussed in detail by Aho et al. [10].
Recursive Descent Parsing. A recursive descent parser typically imple-
ments the productions directly as functions. For each non-terminal, we
have one function that implements it. The body of that function is typi-
cally implemented with a switch statement on the next token, with each

Stellenbosch University https://scholar.sun.ac.za

2.2. PARSING METHODS 25

stmt→ if expr then stmt else stmt
| begin stmt end
| print expr

expr→ id

(a) Example grammar

1 void stmt() {
2 switch(tok) {
3 case IF: eat(IF); expr();
4 eat(THEN); stmt();
5 eat(ELSE); stmt(); break;
6 case BEGIN: eat(BEGIN); stmt();
7 eat(END); break;
8 case PRINT: eat(PRINT); expr(); break;
9 default: error();

10 }
11 }

(b) Function definition that implements stmt-productions.

Figure 2.6: A recursive descent parser implementation.

expansion choice in the case clause. The expected next tokens and the cor-
responding expansion choices are computed via the first and follow func-
tions. Recursive-descent parsing comes in two flavours, recursive-descent
parsers with and without backtracking. We, however, do not discuss the lat-
ter because they are rarely used in practice due to the high computational
overheads that affect their applicability.

Figure 2.6 (a) shows a stripped down example grammar that defines
three types of statements, Figure 2.6 (b) is a function that implements these
statement productions. We see here that the LL(1) grammar structure allows
the parser to decide which stmt-alternative to use in a search for derivation.

2.2.2 Bottom-Up Parsing

Bottom-up parsers search for right-most derivations by (implicitly or ex-
plicitly) constructing the parse tree from the leaf nodes all the way up to
the root. The generalized form of bottom-up parsing is called shift-reduce
parsing, which typically uses an explicit parse stack to represent deriva-
tions. The key operations that the shift-reduce parsers perform are push-
ing symbols onto the parse stack (shift) and popping symbols off the stack.
The pop action is an integral part of the reduce operation, which searches
for a specific substring at the top of the stack that matches the body of a
A-production and replaces it with a non-terminal A at the head of that pro-
duction. Informally, we call the substring at the top of the stack the handle.
Therefore, each reduction step pops the handle off the stack and replaces it
with the head of a matching production. A formal definition of a handle

Stellenbosch University https://scholar.sun.ac.za

26 CHAPTER 2. BACKGROUND

S→ E
E→ E + T | T
T→ T * F | F
F→ (E) | id

Figure 2.7: An expression grammar Gexpr that reflects the precedence and associa-
tivity of operators

Table 2.1: Table showing parse stack configurations and actions taken by a shift-
reduce parser that implements the example grammar on an input expression
id ∗ id.

step stack input action
1 ⊣ id 1 * id 2 ⊢ shift id 1
2 ⊣ id 1 * id 2 ⊢ reduce by F → id
3 ⊣ F * id 2 ⊢ reduce by T → F
4 ⊣ T * id 2 ⊢ shift *
5 ⊣ T * id 2 ⊢ shift id 2
6 ⊣ T * id 2 ⊢ reduce by F → id
7 ⊣ T * F ⊢ reduce by T → T * F
8 ⊣ T ⊢ reduce by E→ T
9 ⊣ E ⊢ reduce by S→ E

10 ⊣ S ⊢ accept

follows below.

Definition 2.2.1 (Handle). Let G = (N, T, P, S) and S ⇒∗rm βAy ⇒rm βγy
then γ is called a handle or redex of the right-sentential form βγy. Each prefix
of βγ is called a viable prefix of G.

Table 2.1 illustrates the actions taken by a shift-reduce parser that recog-
nizes the language of the expression grammar Gexpr shown in Figure 2.7 on
an input string w = id * id . We also use the ⊣ symbol to mark the bottom
of the stack and ⊢ to mark the right end of the input string. The top of the
stack is at its right-most end. For clarity, we also denote the left-most (resp.
right-most) id in w by id 1 (resp. id 2) on the input buffer and stack. We
can see that the parser, at each step, reads symbols left to right from the in-
put, and shifts them onto the stack, until it finds a handle it can replace by
the head of the matching symbol. For example, the leftmost id 1 is shifted
onto the stack in the first step, and reduced by the production F → id in
the second step. This process is repeated until a syntax error is detected or
until the input buffer is empty, and the stack contains the start symbol, the
configuration that marks successful parsing as shown in step 10.

In general, we can summarize the actions that all practical implementa-
tions of shift-reduce parsers make beyond shift and reduce as follows:

Stellenbosch University https://scholar.sun.ac.za

2.2. PARSING METHODS 27

1. Shift. The parser pushes the next symbol onto the parse stack.

2. Reduce. This operation marks the actual application of the grammar
production. This occurs when the top of the stack (contains the han-
dle) matches one of the A-productions, this handle is popped off and
replaced by the non-terminal A.

3. Accept. This operation marks the successful end of parsing.

4. Error. When syntax violations are detected, the parser often tries to
recover from the syntax error by calling an appropriate error recov-
ery and reporting routine. Parsing continues if recovery is successful,
otherwise the process terminates fatally.

Items

An item is a rule A→ α • β with a designated position (denoted by •) on its
right-hand side. An item is called kernel item if α ̸= ε or α = ε and A = S and
non-kernel item otherwise. We use P• to denote the set of all items, i.e., all
rules with all designated positions, and define a function items(A → γ) =
{A → α • β | γ = αβ} that maps a rule to all its items. We often use items
and rules interchangeably, but where necessary we use p• to distinguish an
item from the underlying rule p.

We define as the left (resp. right) set of an item the sets of terminal sym-
bols that can occur in a derivation immediately to the left (resp. right) of the
designated position [130]. Hence, the left set of an item A → α • β contains
all tokens that can occur at the end of α and, if α is nullable, all tokens that
in other contexts can occur left of A.

Definition 2.2.2 (left set, right set). The functions left, right : P• → P(T) are
defined by

left(A→ α • β) =

{
last(α) ∪ precede(A) if α nullable
last(α) otherwise

right(A→ α • β) =

{
first(β) ∪ follow(A) if β nullable
first(β) otherwise

Basics of LR parsing

Shift-reduce parsers are mostly implemented for grammars that belong to
the LR(k) family of grammars. The "L" here also means that the input string
is scanned from left to right; the "R" means searching for right-most deriva-
tion in reverse, while the k also means the number of lookahead symbols
that are used to make parsing decisions. The most common values of k are
0 and 1.

Stellenbosch University https://scholar.sun.ac.za

28 CHAPTER 2. BACKGROUND

LR parsers differ slightly from generic shift-reduce parsing algorithms
in two ways; LR parsers are mostly table-driven and maintain a main stack
of states (instead of symbols) to keep track of the parsing progress. An LR
parser also uses a finite state machine (or an LR automaton) to make parsing
decisions, i.e, when to push and pop states off the stack. This automaton
comes in different flavours (e.g., LR(0), SLR, LALR, etc); however, here we
look at the simplest LR(0) automaton only as it provides a baseline for prac-
tical ones such as LALR automata. Each state of the automaton represents a
set of LR(0) items (or simply items). What an item A→ α • β represents, in-
tuitively, is that the parser has just successfully processed a substring deriv-
able from α and is expecting the substring derivable from β in the input.

Note that we use an augmented grammar G′, with the start symbol S′

and S′ →⊣ S ⊢ as the only production for S′. Note also that we use ⊣ and ⊢
as conceptual markers and never use them in any transition. Therefore, an
initial item is S′ →⊣ •S ⊢, and we consider S′ →⊣ S• ⊢ as the reduce item.
We then define the two functions closure and goto below.

1. closure: Let I be an item set, then the closure(I) comprises I and all
items that can be added to closure(I) following the following steps:

(i) whenever A → α • Bβ is in closure(I) and B → γ is a production,
then we add to closure(I) all items of the form B→ •γ;

(i) repeat until no more items need to be added.

2. goto(I, X) is defined to be the closure of all items {A → αX • β} such
that {A → α • Xβ} is in I, where I is a set of items and X is a gram-
mar symbol. Intuitively, goto(I, X) defines a transition from a state
representing the item set I on a given input symbol X.

Figure 2.8 shows the LR(0) automaton for the original grammar G =
({S, A, B}, {a, b}, {S → Aa, S → Ba, S → ac, A → a, B → a}, S). In or-
der to capture the item set representing the initial state 1, we start with the
initial item S′ →⊣ •S ⊢ to closure(1). We then add the items from the S-
productions, S → •Aa, S → •Bb and S → •ac, then A → •a and B → •a as
S → •Aa and S → •Bb are already contained in closure(1) goto(1, a) spec-
ifies the transition from state 1 on the symbol a; the target state 5 contains
the items S→ a • c, A→ a• and B→ a•.

Parsing Conflicts

Ambiguous grammars force an LR parser into a configuration in which it,
although presented with the knowledge of the stack contents and a valid
next input symbol, cannot decide which action to take. We identify three
types of conflicts below:

Stellenbosch University https://scholar.sun.ac.za

2.2. PARSING METHODS 29

S
′ →⊣ •S ⊢

S →•A a
S →•B b
S →• a c
A→• a
B →• a

1

S → a • c
A→ a •
B → b •

5

S
′ →⊣ S• ⊢

2

S→ A • a

3

S→ B • b

4

S→ A a •

6

S→ B b •

7

S→ a c •

8

S

A

B

a

c

a

b

Figure 2.8: LR(0) automaton.

(i) Shift/reduce conflicts: This conflict occurs when the LR parser is in a
state where it either shifts the next symbol on to the stack and advance
to the next state or perform a reduce operation that marks a successful
completion of a production. In Figure 2.8, we have this type of conflict
in state 5 where the parser can either shift c and advance to state 8 or
reduce by either A → a or B → b. Practical implementations typically
resolve this type of conflict in favour of shifting.

(ii) Reduce/reduce conflicts: This conflict occurs when the parser cannot de-
terministically decide among a number of productions which one to
pick to perform a reduction. State 5 in the LR(0) automaton in Fig-
ure 2.8 has a reduce/reduce conflict between productions A → a and
B→ b. Although this type of conflict is typically resolved in favour of
an earlier production, resulting parsers often run into stability issues
and mostly build the wrong parse trees. In our experimental evalua-
tion, we discard all subject grammars with reduce/reduce conflicts.

(iii) Accept/reduce conflicts: These are the least common and usually forgot-
ten (rightly so) type of conflicts. The parser runs into an accept/reduce
conflict when it cannot decide whether to mark parsing successfully
completed in its entirety or just to mark the application of a single
grammar production as successful.

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

30 CHAPTER 2. BACKGROUND

Practical LALR Parsing

The most widely used LR parser implementation in practice is based on
the lookahead-LR (LALR) method. It can handle more grammars (i.e., con-
struct conflict-free LR-automata for more grammars) than the simple LR(0)
method. For example, in the LR(0) automaton in Figure 2.8, state 5 has both
shift/reduce and reduce/reduce conflicts and the parser can build wrong
trees on any derivations that pass through that state. The LALR algorithm
is certainly not the most powerful LR parsing mechanism known, but what
makes it attractive is the low memory overhead incurred due to the fact that
its automaton has the same number of states as the equivalent LR(0) but
items on the LALR automaton contains more information to help in parsing
decisions. Each item of the LALR automaton is of the form, A→ α • β/{a},
where A→ α • β is known as the core and {a} is the set of terminals a or the
end–marker symbol ⊢ used as lookahead symbols. We use "/" to separate
the core of an item from its set of lookahead symbols.

The two functions closure and goto that we saw earlier are also slightly
different here as they take the lookahead symbol into account. To compute
closure(I) for an item set I, we add the item A → α • Bβ/{a} to closure(I),
where {a} is the set of lookahead symbols. If B→ γ is a production, we then
add to closure(I) all the items of the form B→ •γ, {b}, where {b} represents
all terminal symbols in first(βa). The goto transition relation remains largely
unchanged but the lookahead mechanism heavily influences the next state
configuration, i.e., the transition to the next state becomes viable when the
next token in the input buffer matches the lookahead symbol in the current
state. For example, say we are in some state I with one of the following
items A → a • β/{a} and B → a • /{b}. The LR(0) parser would encode a
shift/reduce conflict, but the LALR method would reduce by B → a if the
next input symbol is a b, and shifts otherwise.
Running example. We use the grammar G shown in Figure 2.10 to illustrate
the computation of closure and goto of LR item sets. The LALR automaton
in Figure 2.9 represents the collection of LR items for grammar G.

We initialize closure(0) with the item S′ →⊣ •S ⊢ /{⊢}, with the looka-
head from the S-productions being first(⊢) = {⊢}, we then add S→ •AA/{⊢
}. We then add items A→ •aB/{a} and A→ •a/{a} from the A-productions
to closure(0), with their lookahead symbol computed via first(A ⊢) = {a}.
goto(0, A) brings us to state 2 with the initial item S → A • A/{⊢} in
closure(2) and the entire process is repeated until no further items can be
added.

The LALR Parse Table

Another useful ingredient that plays a crucial role in the LALR machinery
is the parse table, Which, encodes the LALR automaton. We discuss its

Stellenbosch University https://scholar.sun.ac.za

2.2. PARSING METHODS 31

S
′ →⊣ S• ⊢ /{⊢}

1

S
′ →•S/{⊢}

S →•AA/{⊢}
A→•aB/{a}
A→•a/{a}

0

S → A • A/{⊢}
A→•aB/{⊢}
A→•a/{⊢}

2

A→ a • B/{a,⊢}
A→ a • /{a,⊢}
B →•bb/{a,⊢}

3

S→ AA • /{⊢}

4

A→ a B • /{a,⊢}

5

B→ b • b/{a,⊢}

6

B→ b b • /{a,⊢}

7

S
A

a

A

a B

b

b

Figure 2.9: LALR automaton.

S → AA
A→ aB | a
B → bb

Figure 2.10: An example grammar G we use to illustrate LALR parsing concepts.

construction in this section. The systematic construction of the parse table
can be summarized by two output functions, ACTION and GOTO. From
the sets of states I0 . . . In from the corresponding LALR automaton, we index
the rows of the table by the same number of states. We detail the steps to fill
entries of each part of the LALR parse table below using the corresponding
LALR automaton.

ACTION. Conventionally, columns of the ACTION part of the table are
indexed by all terminals (including the endmarker ⊢) and entries for state Ii
are constructed for each terminal symbol of the grammar.

• If A→ α • aβ/_ is in Ii and goto(Ii, a) = Ij, then we set ACTION[Ii, a]
to shift Ij.

• If A → α • /{a} is in Ii, then we set ACTION[Ii, a] to reduce A → α
for all lookahead symbols a.

• If S′ ⊣→ S• ⊢ /{⊢} is in Ii, then we set ACTION[Ii,⊢] to accept.

GOTO. The GOTO entries for each state Ii are constructed for all non-terminals.
More specifically, if goto(Ii, A) = Ij, then we set GOTO[Ii, A] to Ij.

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

32 CHAPTER 2. BACKGROUND

Table 2.2: The LALR parse table configuration for example grammar G shown in
Figure 2.10 that encodes the automaton in Figure 2.9.

ACTION GOTO
states a b ⊢ S A B

0 shift 3 1 2
1 accept

2 shift 3 reduce A→ a 4
3 reduce A→ a shift 6 reduce A→ a 5
4 reduce S→ AA
5 reduce A→ aB reduce A→ aB
6 shift 7
7 reduceB→ bb reduceB→ bb

Algorithm 1: The generic LR parsing algorithm (adapted from [10])
input : An input string w
input : An LR parse table with ACTION and GOTO operations for

grammar G
output: A successful parse if w ∈ L(G) otherwise syntax error report

1 parsing_done← f alse
2 repeat
3 s← stack.top()
4 v← next_input(w)
5 if ACTION[s, v] == shift t then
6 stack.push(t)
7 else if ACTION[s, v] == reduce A→ α then
8 i← 0
9 while i < |α| do

10 stack.pop()
11 i→ i + 1

12 stack.push(GOTO[s, A])
13 else if ACTION[s, v] == accept then
14 parsing_done← true
15 else
16 error_recovery()
17 parsing_done← true
18 until parsing_done

Error. We set entries not defined by the previous steps as error, either ex-
plicitly or implicitly.

Stellenbosch University https://scholar.sun.ac.za

2.3. GRAMMAR-BASED TESTING 33

The LR Parsing Algorithm

Algorithm 1 shows the main parsing routine that puts together all the LALR
parsing concepts we have discussed so far. It takes as input an input string
w and a parse table, maintains an internal parse stack of states and returns
as output, at the very least, success if w is accepted or reports syntax viola-
tions. It is worth noting that all LR parsing methods use the same parsing
algorithm, but differ in the construction of their parse tables.

Here, we assume a stable lexical analyser interface that interacts with
the parser via a call to next_token() in line 4. The function returns tokens
and feeds them to the parser. More lexical analysis concepts can be found
in Aho et al. [10, Chapter 3]. The four basic actions performed by an LR
parser are as follows: (i) shift: lines 13 and 14; (ii) reduce: from line 7 to 12;
(iii) accept: lines 13 and 14; and (iv) error in the else-branch at line 16 via a
call to error_recovery(). There exist various algorithms for syntax error
recovery, but we leave their discussion for related work in Section 6.6.

An illustrative example. Table 2.3 shows an illustration of the main parsing
loop in Algorithm 1 based on the example grammar G (see Figure 2.10) and
its corresponding parse table (see Table 2.2). Let w = aabb be an input string
that we want to parse. Initially, the stack contains an initial state (state 0),
and the input is read from left to right. The parsing process starts from
line 3 with the top of the stack s = 0 and the next input symbol v = a,
hence ACTION[0, a] = shift 3 results in state 3 being pushed onto the
stack. The next iteration has values s = 3 and another v = a, and we get
ACTION[3, a] = reduce A → a. The production A → a has a length of
1, and we pop off one state from the parse stack (lines 8-11). After the pop
we now have s = 0. We consult the transition function to give us the next
state to push on the stack, since GOTO[0, A] = 2, we then push state 2
which then becomes our new top of the stack. The parser continues in this
manner, mostly deciding when to shift and and reduce by a production in
G until it ends up in a configuration, ACTION[1,⊢] in which case the input
string w is accepted. A different input string w′ = aab leads the parser to
an undefined configuration from the parse table shown in Table 2.2 and in
which case the parser calls an appropriate error recovery routine, reports
the error to the user and parsing terminates.

2.3 Grammar-Based Testing

In this section, we introduce one of the established fields that our proposed
approaches build on. Grammar-based testing is a type of software testing
in which a grammar is used to generate test inputs. This form of testing
was originally applied to test parsers and even grammars themselves [124].
Similar techniques have been applied to other software, such as compilers,

Stellenbosch University https://scholar.sun.ac.za

34 CHAPTER 2. BACKGROUND

Table 2.3: Stack configuration and actions performed by an LALR parser that im-
plements an example grammar G in Figure 2.10 on an input string w = aabb.

stack rest of input action
0 aabb ⊢ shift 3
0 3 abb ⊢ reduce A→ a
0 2 abb ⊢ shift 3
0 2 3 bb ⊢ shift 6
0 2 3 6 b ⊢ shift 7
0 2 3 6 7 ⊢ reduce B→ bb
0 2 3 5 ⊢ reduce A→ aB
0 2 4 ⊢ reduce S→ AA
0 1 ⊢ accept

and have enabled more recent software testing approaches such as fuzzing
to find bug and security vulnerabilities that lie deeper in the system beyond
the syntax analysis stage.

We can identify different application scenarios of grammar-based test-
ing, depending on the nature of the system under test, the availability of
grammars and the specific goal to be achieved by the generated tests inputs:
System testing. In system testing, the overall goal is to demonstrate the re-
liability and robustness of the SUT. More specifically, the idea is to generate
from a known reference grammar Gref test inputs that exercise the SUT thor-
oughly. The degree to which the SUT is exercised can be measured using
common control- and data-flow based software coverage metrics (e.g., the
number of branches covered) or the number of system failures induced by
the tests (e.g., system crashes).
Grammar testing. In grammar testing, which is the main focus of our dis-
cussion in this section, the goal is to demonstrate that a different test gram-
mar Gtest is (not) equivalent to Gref . However, while context–free grammar
equivalence is undecidable in general, the idea here is to generate test inputs
that show that Gtest is incorrect with respect to Gref (i.e., L(Gtest) ̸= L(Gref))
or that Gtest is incomplete with respect to Gref (i.e., L(Gtest) ⊉ L(Gref)).

Before we introduce different grammar-based test suite construction meth-
ods, we formally define test suites in Section 2.3.1 and introduce and high-
light differences among failure, error, and fault, concepts which are com-
monly used interchangeably in various settings.

2.3.1 Test suites

A test suite consists of a list of SUT inputs and corresponding expected out-
puts (which can also be specific system errors, e.g., for illegal inputs). The
SUT passes a test if it produces the expected output for the given input. In
our case, test inputs are words w ∈ T∗, and expected outputs are either "ac-

Stellenbosch University https://scholar.sun.ac.za

2.3. GRAMMAR-BASED TESTING 35

cept" or "reject". More detailed expected outputs (e.g., error locations) could
prevent the misclassification of applied rules, and so increase the precision
of the fault localization, but are difficult to implement because they may
depend on internal aspects of the parser (e.g., an error correction strategy).

2.3.2 Failure, error, fault

The informal notion of a "bug" can be deconstructed into three different
concepts [1, 144]. A failure is a situation where the system’s observed output
deviates from the correct output, an error is an internal system state that may
lead to a failure, and a fault is a code fragment which causes an error in the
system when it is executed. Note that errors do not necessarily manifest
themselves as observable failures.1Fault localization is an attempt to identify
the unknown position of the fault from an observed failure.

2.3.3 Grammar-Based Test suite Construction

For our experimental evaluation, we use test suites that satisfy different
grammar coverage criteria and have certain characteristics. We use both
positive (i.e., syntactically valid) and negative test suites that contain a sin-
gle, well-defined error. The material presented in this section is an adoption
of our work presented in [130] and [150], and some formal definitions are
taken from there.

Positive test suites

For the construction of positive tests TS+, we use a generic cover algorithm
proposed by Fischer et al. [43]. Its basic idea is to

(i) iterate over all symbols X ∈ V,

(ii) embed X, i.e., compute a minimal derivation S⇒∗ αXω,

(iii) cover X, i.e., compute a set of minimal derivations X ⇒∗ γ that con-
form to the criterion, and

(iv) convert the sentential form into a word, i.e., compute a minimal deriva-
tion αγω ⇒∗ w where each non-terminal A in αγω is replaced by its
minimal yield wA.

Note that this algorithm is by construction biased towards very short tests
because it uses minimal derivations in all steps.

We use different grammar coverage criteria. The most basic grammar
coverage criterion is symbol coverage that simply ensures that every grammar

1The notion of "defect", "infection", and "failure" by Zeller [171] subtly differs from our
separation of "failure - error - fault" and is not widely used.

Stellenbosch University https://scholar.sun.ac.za

36 CHAPTER 2. BACKGROUND

symbol X ∈ V is used in the generation of a test suite TS+. Definition
2.3.1 gives a formal description. Even in its simplest form, test suites that
satisfy this criterion can still be very large. However, these test suites are
typically too weak to provide confidence that the grammar is correct or that
the system under test is well tested. In our experimental comparison of
positive syntactic tests [150], we show that symbol coverage test suites fall
far behind in achieved line coverage and the number of system crashes.

Definition 2.3.1 (symbol coverage). Let G = (N, T, P, S) be a grammar, V =
N ∪ T and TS+ be a positive test suite for G. A word w ∈ TS+ covers a
symbol X ∈ V iff S⇒∗ αXβ⇒∗ w. TS+ satisfies symbol coverage (w.r.t. G)
iff each symbol X ∈ V is covered by a word w ∈ TS+.

Rule coverage (Definition 2.3.2) takes a step further and tries to strengthen
symbol coverage. Test suites that satisfy rule coverage guarantee that every
production A → α ∈ P is exercised in a derivation of at least one word in
the test suite.

Definition 2.3.2 (rule coverage). Let G = (N, T, P, S) be a grammar and TS+

be a positive test suite for G. A word w ∈ TS+ covers a rule A → γ ∈ P iff
S ⇒∗ αAβ ⇒ αγβ ⇒∗ w. TS+ satisfies rule coverage (w.r.t. G) iff each rule
A→ γ ∈ P is covered by a word w ∈ TS+.

Rule coverage offers some confidence of grammar correctness and trig-
gers most of the surface (i.e., easy-to-find) bugs. Lämmel [82] defines context
dependent rule coverage (CDRC Definition 2.3.3) which generalizes rule cov-
erage and has become a standard criterion. The basic idea behind CDRC is
to apply each A-production in all occurrences of the non-terminal A in all
rules. CDRC subsumes rule coverage and induces richer test suites.

Definition 2.3.3 (CDRC coverage). Let G = (N, T, P, S) be a grammar and
TS+ be a positive test suite for G, and p = A → x1 . . . xn ∈ P, be a rule. A
word w ∈ TS+ covers the occurrence xi ∈ N in p with the rule qi = xi → δ ∈ P
iff S ⇒∗ αAβ ⇒ αx1 . . . xnβ ⇒ αx1 . . . xi−1δxi+1 . . . xnβ ⇒∗ w. TS+ covers
xi in p if it contains a word wj for each rule qj = xi → δj ∈ P such that
wj covers xi in p with qj; it covers p if it covers all xi in p. TS+ satisfies
context-dependent rule coverage (w.r.t. G) iff each rule p ∈ P is covered by a
word w ∈ TS+.

We also use k-step coverage (called k-path in work by Havrikov and
Zeller [56]) in our experimental evaluation. This criterion induces longer
words by considering k-depth bounded derivations that cover every pair
(X, Y) ∈ V.

Definition 2.3.4 (k-step coverage). Let G = (N, T, P, S) be a grammar, V =
N ∪ T and TS+ be a positive test suite for G. A word w ∈ TS+ covers a pair

Stellenbosch University https://scholar.sun.ac.za

2.3. GRAMMAR-BASED TESTING 37

(X, Y) ∈ V ×V in at most k steps iff S⇒∗ αXβ⇒l αγYδβ⇒∗ w with l ≤ k.
TS+ satisfies k-step coverage (w.r.t. G) iff each pair (X, Y) with X ⇒l αYβ
and l ≤ k is covered by a word w ∈ TS+.

We can interpret symbol, rule and CDRC criteria using k-step: symbol can
be seen as 0-step, rule as 1-step while CDRC is a 2-step algorithm.

We introduced a fixpoint version of k-step in our previous work [150]
shown in Definition 2.3.5. This criterion ensures that all shortest paths be-
tween every pair of symbols (X, Y) ∈ V are covered. We showed that it
produces compact test suites that achieve code coverage that is comparable
to criteria that induce longer and deeper derivations such as k-step and bfsk.

Definition 2.3.5 (derivable pair coverage). Let G = (N, T, P, S) be a gram-
mar, V = N ∪ T and TS+ be a positive test suite. A word w ∈ TS+ covers a
pair (X, Y) ∈ V × V if S ⇒∗ αXβ ⇒∗ αγYδβ ⇒∗ w. TS+ ⊆ L(G) satisfies
derivable pair coverage (w.r.t. G) if each pair (X, Y) with X ⇒∗ µYν for
some µ, ν is covered by a word w ∈ TS.

We can further generalize CDRC to explore deeper derivations by simul-
taneously covering all possible combinations of A-productions in all occur-
rences of non-terminal A. This expansion is realized by a breadth-first cover-
age that generates tests according to a simultaneous derivation relation ⇛
where X1 . . . Xn ⇛ γ1 . . . γn if there exists a rule Xi → γi ∈ P for all Xi ∈ N
and γi = Xi for all Xi ∈ T. We denote its k-fold repetition⇛k by bfsk because
it amounts to k "breadth-first rounds" of rule applications.

Definition 2.3.6 (breadth-first coverage). Let G = (N, T, P, S) be a grammar
and TS+ be a positive test suite for G. TS+ satisfies bfsk coverage (w.r.t. G)
if for each X ∈ V and γ ∈ V∗ with X ⇛k γ, there is a word w ∈ TS+ such
that S⇒∗ αXβ⇒∗ αγβ⇒∗ w.

For example, consider the example grammar G = ({S, A, B}, {a, b}, {S→
AB, A→ a | b, B→ a | b}, S), a test suite TS+

cdrc = {aa, bb} and k = 2. TS+
cdrc

satisfies CDRC, but does not cover all possible combinations of expanding
A and B. A and B get fully multiplied out in bfs2 giving yield to the test
suite TS+

bfs = {aa, bb, ab, ba}.
For smaller values of k, bfsk test suites are comparable both in size and

achieved system code coverage to those generated using k-step, but with
increasing values of k, we are much more likely to run into combinatorial
explosion faster with bfsk than k-step.

The next coverage criterion also considers a pair (X, Y) ∈ V, but only in
a local context. It ensures that every adjacent pair of (X, Y) is covered in a
test suite TS+.

Definition 2.3.7 (adjacent pair coverage). Let G = (N, T, P, S) be a gram-
mar, V = N ∪ T and TS+ be a positive test suite for G. A word w ∈ TS+

Stellenbosch University https://scholar.sun.ac.za

38 CHAPTER 2. BACKGROUND

covers an adjacent pair (X, Y) ∈ V × V iff S ⇒∗ αXYβ ⇒∗ w. TS+ satis-
fies adjacent pair coverage (w.r.t G) iff each (X, Y) with Y ∈ follow(X) is
covered by a word w ∈ TS+.

Random test suites

As is common in grammar-based fuzzing, we also use random derivations.
More specifically, we construct a random subset of the ⇛k derivations,
which allows us to explore longer derivations than full bfsk. After k iter-
ations, we replace the unexpanded non-terminals with their minimal yield,
as in the generic cover algorithm. Note that this setup may introduce some
bias, in particular towards the rules used in the yield construction.

Negative test suites

For syntactically invalid test suites, we construct negative test suites us-
ing two mutation-based algorithms (word- and rule-mutation) described in
[130]. The basic idea is to induce test suites with poisoned pairs using string
edit-distance operators such as symbol insertion, deletion, substitution and
swapping as mutation operators. A poisoned pair is any pair of symbols
(X, Y) that can never occur next to each other in any derivation from the
start symbol, i.e., iff X /∈ precede(Y) or iff Y /∈ follow(X). We use PP(G)
to denote the set of all poisoned pairs in a grammar G. Both algorithms
guarantee test suites with a single and well-defined error.
Word Mutation. Word mutation algorithms take as input a positive ref-
erence test suite TS+ and systematically introduce poisoned pairs to each
test case T ∈ TS+. This idea can be implemented by applying a family
M of mutation operators to each test in a given positive test suite TS+, i.e.,
TS− = {m(w) | m ∈ M, w ∈ TS+}.

Proposition 2.3.8 (Damerau-Levenshtein mutations). Let G be a grammar.
Then:

1. (token deletion) If uabcv ∈ L(G) and (a, c) ∈ PP(G), then uacv /∈ L(G).

2. (token insertion) If uacv ∈ L(G), b ∈ T, and either (a, b) ∈ PP(G) or
(b, c) ∈ PP(G), then uabcv /∈ L(G).

3. (token substitution) If uabcv ∈ L(G), d ∈ T, and either (a, d) ∈ PP(G)
or (d, c) ∈ PP(G), then uadcv /∈ L(G).

4. (token transposition) If uabcdv ∈ L(G), and either (a, c) ∈ PP(G) or
(c, b) ∈ PP(G) or (b, d) ∈ PP(G), then uacbdv /∈ L(G).

For any positive test suite TS+ we denote by DL(TS+) the negative test
suite that results from applying to all words from TS+ all token mutations

Stellenbosch University https://scholar.sun.ac.za

2.3. GRAMMAR-BASED TESTING 39

at all positions that satisfy the conditions of Proposition 2.3.8; we also call
this set the Damerau-Levenshtein mutants of TS+. We can construct DL(TS+)
with a simple token-stream fuzzing algorithm: we iterate token-by-token over
each word in TS+ and check whether the conditions of Proposition 2.3.8 are
satisfied at the current position; if so, we output the corresponding mutant.

Consider for example the following grammar Garith for arithmetic ex-
pressions:

E→ E * E | E / E | E + E | E - E | (E) | - ? num | id

Note that the minus sign is not part of the num token but a unary operator
that is only applicable to num’s; consequently, x*-1 is a valid word, but
x*+1 or x*-y are not.

We have follow(() = {(, - , num, id} (with the same for * , / , + , and
-), and follow()) = { * , / , + , - ,) } (with the same for num and id). Now
consider the valid word x*1 ∈ TS+. Since + /∈ follow(*) (and hence
(+ , *) ∈ PP(Garith)), we know that inserting a + after the * produces a
syntax error. Similarly, since (id, num) ∈ PP(Garith), we know that deleting
the * produces a syntax error as well.

The conditions stated in Proposition 2.3.8 are sufficient for a syntax er-
ror, but not necessary. The main limitation comes from the fact that the
conditions only check the local context, and do not take the derivation into
account. For example, since an id can follow a - , the positive test x*-1
is not mutated into x*-y /∈ L(Garith). Similarly, (x) is mutated into (x)(
(because (/∈ follow())), but not into (x)).

Rule Mutation. Rule mutation systematically modifies the rules of a
grammar G so that every derivation that uses such a modified rule produces
a poisoned pair and thus induces a negative test case.

We can then formulate conditions under which we allow a symbol mu-
tation. The idea here is to check for "boundary incursions" over the desig-
nated position of the modified item, i.e., to check whether any token that
can follow (precede) the left (right) set of the modified item is also in its
right (left) set. If that is not the case, then any yield must contain a poisoned
pair straddling the designated position, and hence cannot be part of a word
in the language.

Definition 2.3.9 (symbol deletion mutation). Let p=A→ α •Xβ be an item
in P•. If either

follow(left(A→ α • β)) ∩ right(A→ α • β) = ∅

or
left(A→ α • β) ∩ precede(right(A→ α • β)) = ∅

then the deletion of X from p at the designated position yields the mutated
production p′ = A→ αβ.

Stellenbosch University https://scholar.sun.ac.za

40 CHAPTER 2. BACKGROUND

Definition 2.3.10 (symbol insertion mutation). Let p = A → α • β be an
item in P•, and X ∈ V be a symbol. If either

follow(left(A→ α • Xβ)) ∩ right(A→ α • Xβ) = ∅

or
left(A→ α • Xβ)) ∩ precede(right(A→ α • Xβ) = ∅

then the insertion of X into p at the designated position yields the mutated
production p′ = A→ αXβ.

If X is nullable, then both conditions of Definitions 2.3.9 and 2.3.10 are
false by construction. Hence, we never delete or insert a nullable symbol.

Definition 2.3.11 (symbol substitution mutation). Let p = A → α • Xβ be
an item in P•, and Y ∈ V. If either

follow(left(A→ α •Yβ)) ∩ right(A→ α •Yβ) = ∅

or
left(A→ α •Yβ) ∩ precede(right(A→ α •Yβ)) = ∅

then the substitution of X by Y in p at the designated position yields the
mutated production p′ = A→ αYβ.

We use the notation p ⇝ p′ to denote that a production p′ has been
constructed from p by mutation with any of the mutation operations above.

2.4 Spectrum-Based Fault Localization
Spectrum-based fault localization (SFL) is a heuristic, coverage-based, dynamic
method used to identify likely faulty program elements in programs. Pro-
gram elements are typically statements but can also be methods, control-
flow graph edges, classes, etc. We can summarize the process in three steps:

1. Execute the SUT over a test suite, collect coverage for each individual
test case.

2. Correlate the coverage with the test outcomes and aggregate it into the
spectrum.

3. Compute suspiciousness scores for elements and rank. Higher scores
and thus ranks indicate higher bug likelihood.

Formally, a program spectrum is a representation of the execution in-
formation for the SUT’s individual program elements; most SFL methods
use (binary) statement coverage, i.e., record whether a statement has been
executed for a given test or not.

Stellenbosch University https://scholar.sun.ac.za

2.4. SPECTRUM-BASED FAULT LOCALIZATION 41

Table 2.4: Example program spectrum.

t1 t2 t3 t4 t5 t6
input a 2 -2 0 5 2 3
input b 3 5 0 8 2 7
input op sum sum sum mean mean mean
expected output 5 3 0 6 2 5
observed output -1 -7 0 6 2 5

line program S R
1 read(a); ✗ ✗ ✓ ✓ ✓ ✓ 0.33 2
2 read(b); ✗ ✗ ✓ ✓ ✓ ✓ 0.33 2
3 read(op); ✗ ✗ ✓ ✓ ✓ ✓ 0.33 2
4 if(op == "sum") ✗ ✗ ✓ ✓ ✓ ✓ 0.33 2
5 res = a− b; //fault ✗ ✗ ✓ 0.67 1
6 else if(op == "mean") ✓ ✓ ✓ 0 7
7 res = (a+ b)/2; ✓ ✓ ✓ 0 7
8 print(res); ✗ ✗ ✓ ✓ ✓ ✓ 0.33 2

Table 2.4 illustrates an application of SFL methods to pinpoint a fault in
the 8-line program listed in column program. The program takes as input
two integer values a and b, and a third argument, which is the operation
to perform on a and b. There are two operations to perform, where sum

computes the sum of a and b and mean computes the average of a and b.
The fault (or bug) is in line 5. We execute the program over six tests, t1-t6
with their inputs, observed and expected outputs shown in the first block
of Table 2.4. Tests t1 and t2 are failing tests and execute the same statements
as the passing test t3. The second block shows statement-level program
spectra, suspiciousness scores and ranks for the faulty example program.
✓ (resp. ✗) indicates that a statement has been executed in a passing (resp.
failing) test case. S shows the actual suspiciousness score assigned to each
statement while R is the ranking. In this example, the suspiciousness score
is simply computed by dividing the number of failing tests that executed
a statement by the total number of tests. We ignore the number of times
a statement was executed in passing tests. More advanced formulas are
presented in Section 2.4.2.

In this example, the faulty line (i.e., line 5) gets assigned the highest score
and thus highest rank. When debugging, the programmer uses the SFL re-
port and starts examining statements in the descending order of their ranks.
In this particular case, the first statement to examine contains a fault and can
be fixed accordingly. Another phenomenon that we can observe from the
example, is that multiple statements are assigned the same scores, and thus
have the same ranks. These ties are prevalent in SFL. We use the mid-rank
tie breaking mechanism to assign ranks under columnR.

The next sections introduce basic counts and ranking metrics which are the

Stellenbosch University https://scholar.sun.ac.za

42 CHAPTER 2. BACKGROUND

Table 2.5: SFL ranking metrics

Ranking metric score(e)

Tarantula [69]
ef (e)

ef (e)+nf (e)
ef (e)

ef (e)+nf (e)+
ep(e)

ep(e)+np(e)

Ochiai [115] ef (e)√
(ef (e)+nf (e))(ef (e)+ep(e))

Jaccard [26] ef (e)
ef (e)+nf (e)+ep(e)

DStar [157] ef (e)n

nf (e)+ep(e)

essential SFL ingredients used for the computation of suspiciousness scores.

2.4.1 Basic Counts

The spectra for the individual tests are correlated with the test outcomes
and aggregated into four basic counts for each individual program element
e: ep(e) and ef (e) are the number of passed and failed tests, respectively, in
which e is executed, while np(e) and nf (e) are the number of passed and
failed tests, respectively, in which e is not executed. In the example program
in Table 2.4, if e is the faulty statement in line 5, then its basic count values
are: ef (e) = 2, ep(e) = 1, nf (e) = 0, and np(e) = 3.

2.4.2 Ranking Metrics

SFL methods use the basic counts to compute for each program element a
suspiciousness score; elements that have a higher score are ranked higher and
are seen as more likely to contain a bug. The methods which are tradition-
ally called ranking metrics, even though they are not proper metrics, differ
in the formulas used for the score computation. In this thesis, we use four
ranking metrics that are widely used in SFL. Table 2.5 shows their defini-
tions. Note that Tarantula [69] is the only metric that uses the number of
passed tests np(e) in which an element e is not executed. Note also that
DStar [157] is parameterized over the exponent n; here, we use the most
common value n = 2. DStar becomes undefined for an element e if it is
executed only in failing test cases. We assign a maximal score in this case,
since we consider e to be the most suspicious element.

The metrics become undefined or degenerate and rank all elements equally
if the test suite does not contain at least one failing test; similarly, the metrics
become undefined or simply rank the elements by occurrence count if the

Stellenbosch University https://scholar.sun.ac.za

2.4. SPECTRUM-BASED FAULT LOCALIZATION 43

test suite does not contain at least one passing test. We therefore assume in
our work that test suites indeed contain at least one failing and one passing
test.

Ranking metrics can assign the same score to different elements. For
ranking purposes, we need to resolve such ties and assign a well-defined
rank to all tied elements. Here we use the mid-point of the range of elements
with the same score; the assigned rank then indicates how many elements
a user is expected to inspect before they find the fault if elements with the
same score are inspected in random order. A more pessimistic variant uses
the lowest possible rank that is consistent with the scores; this would result
in a worst-case estimate of the number of elements to be inspected.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Rule-Level Fault Localization

In this chapter, we illustrate and formalize the notion of grammar spectra
which underlies our approach, at the level of grammar rules; we consider a
more fine-grained localization at the level of rule items in Chapter 4. In the
following we assume that the SUT is a CFG G = (N, T, P, S); we assume
that this is implemented faithfully in a parser since we are trying to localize
errors in the grammar, not in the parser’s implementation.

We first illustrate our method with a worked example based on the toy
grammar GToy in Section 3.1. We fix formal definitions of rule spectra in
Section 3.2.

In order to collect the grammar spectra, we typically modify the parser
to log which rules it has applied. The nature of the modifications depends
on the general parsing technology and the specifics of the parser; we de-
scribe the modifications we made to the JavaCC, ANTLR, and CUP parser
generators in order to generate parsers with the required logging extensions
in Sections 3.3 and 3.4. In Section 3.5, we describe how rule spectra can be
extracted directly from individual test cases derived from the grammar in
applications where we cannot obtain a standalone parser derived from the
grammar.

We then demonstrate the efficacy of our baseline fault localization method
through a series of experiments. We first evaluate our approach over gram-
mars with seeded faults (see Section 3.6.1 and 3.6.2) because the ground-
truth is required for evaluation and because it is much easier to produce
a large experimental basis. We then evaluate it using grammars which
contain real and multiple faults in Section 3.6.3. The last experiment (see
Section 3.6.4) addresses scalability questions of our approach by using a
large, production-level SQLite grammar to find out how it deviates from
the grammar implemented by a fully-fledged SQLite system.

45

Stellenbosch University https://scholar.sun.ac.za

46 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

prog → program id = block .
block → { decls stmts } | { decls } | { stmts } | { }
decls → decl ; decls | decl ;
decl → var id : type
type → bool | int
stmts→ stmt ; stmts | stmt ;
stmt → sleep

| if expr then stmt
| if expr then stmt else stmt
| while expr do stmt
| id = expr
| block

expr → expr = expr | expr + expr | (expr) | id | num

Figure 3.1: An example grammar GToy .

1 program x = {x = (x);}.
2 program x = {x = x + x;}.
3 program x = {x = x;}.
4 program x = {x = x = x;}.
5 program x = {x = 0;}.
6 program x = {if x then sleep;}.
7 program x = {if x then sleep else sleep;}.
8 program x = {sleep; sleep;}.
9 program x = {sleep;}.

10 program x = {var x:bool; sleep;}.
11 program x = {var x:bool; var x bool;}.
12 program x = {var x:bool;}.
13 program x = {var x:int;}.
14 program x = {while x do sleep;}.
15 program x = {{};}.
16 program x = {}.

Figure 3.2: Test suite satisfying rule-coverage for GToy .

3.1 Worked Example

We illustrate our method with a worked example based on the toy gram-
mar GToy shown in Figure 3.1 and a corresponding test suite satisfying rule-
coverage, shown in Figure 3.2. Note that GToy is not an LL(k) grammar but
in a form that is suitable for LR parsers. We assume that the grammar devel-
oper has made mistakes in formulating the statement rules in GToy , requiring
the else-branch to be present and restricting the body of while-loops to be

Stellenbosch University https://scholar.sun.ac.za

3.1. WORKED EXAMPLE 47

Table 3.1: Rule spectra, suspiciousness scores, and ranks for the faulty grammar
version G′Toy

and rule test suite.

rule 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ep np ef nf T O J D
prog:1 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 11 0 2 0 0.5 8 0.4 6 0.1 7 0.3 6
block:1 ✓ 1 13 0 2 0 - 0 - 0 - 0 -
block:2 ✓ ✓ ✓ 3 11 0 2 0 - 0 - 0 - 0 -
block:3 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ 9 5 2 0 0.6 6 0.4 4 0.2 4 0.4 4
block:4 ✓ 1 13 0 2 0 - 0 - 0 - 0 -
decls:1 ✓ 1 13 0 2 0.0 - 0.0 - 0.0 - 0.0 -
decls:2 ✓ ✓ ✓ 3 11 0 2 0.0 - 0.0 - 0.0 - 0.0 -
decl:1 ✓ ✓ ✓ ✓ 4 10 0 2 0.0 - 0.0 - 0.0 - 0.0 -
type:1 ✓ ✓ ✓ 1 10 0 2 0.0 - 0.0 - 0.0 - 0.0 -
type:2 ✓ 1 10 0 2 0.0 - 0.0 - 0.0 - 0.0 -
stmts:1 ✓ 1 13 0 2 0 - 0 - 0 - 0 -
stmts:2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ 9 5 2 0 0.6 6 0.4 4 0.2 4 0.4 4
stmt:1 ✗ ✓ ✓ ✓ ✓ 4 10 1 1 0.6 5 0.3 7 0.2 6 0.2 7
stmt:2 ✗ ✓ 1 13 1 1 0.9 2 0.5 3 0.3 2 0.5 3
stmt:3 ✗ 0 14 1 1 1.0 1 0.7 1 0.5 1 1.0 1
stmt:4 ✓ ✓ ✓ ✓ ✓ 5 9 0 2 0.0 - 0.0 - 0.0 - 0.0 -
stmt:5 ✓ 1 13 0 2 0.0 - 0.0 - 0.0 - 0.0 -
expr:1 ✓ 1 13 0 2 0.0 - 0.0 - 0.0 - 0.0 -
expr:2 ✓ 1 13 0 2 0.0 - 0.0 - 0.0 - 0.0 -
expr:3 ✓ 1 13 0 2 0.0 - 0.0 - 0.0 - 0.0 -
expr:4 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 5 9 2 0 0.7 3 0.5 2 0.3 3 0.8 2
expr:5 ✓ 1 13 0 2 0.0 - 0.0 - 0.0 - 0.0 -

blocks:
stmt→ sleep

| if expr then stmt else stmt
| while expr do block
| id = expr
| block

We call this faulty version G′Toy
.

We create a parser for the faulty version G′Toy
and run it over the test

suite to collect the grammar spectra shown in Table 3.1. Rules are denoted
by the non-terminal name and the index of the corresponding alternative.
✓(resp. ✗) indicates execution in a passing (resp. failing) test cases. Faulty
rules are shown in bold. We finally compute the scores according to the four
ranking metrics shown in Table 2.5 and rank the rules; note that ties could in
principle also result from different execution counts, although this is not the
case here. T denotes scores and ranks computed using Tarantula, O using
Ochiai, J using Jaccard and D using Dstar. Ranks are only shown for rules
with non-zero scores.

All four metrics pinpoint the faulty while-rule (i.e., stmt:3) as the unique
most suspicious rule. This is hardly surprising because the rule is only ap-
plied in one test case and that one is failing. The second fault is more diffi-
cult to localize because the faulty rule is executed in both failing and pass-
ing test cases. Tarantula and Jaccard rank it second while Ochiai and DStar
rank it third, in both cases behind the rule expr→ id that is applied in most
derivations.

Stellenbosch University https://scholar.sun.ac.za

48 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

program x =

prog:1

block:3 .

{ stmt:4 ; }

x = expr:3

(expr:4)

x

prog : 1
block : 3
stmt : 4
expr : 3
expr : 4

Figure 3.3: An illustration of spectrum collection using a parse tree (left) of w =
program x = {x = (x);} .. Traversal of the non-leaf nodes gives the set R ⊆ P
shown on the right.

If we inspect the rules in rank order and resolve ties by picking rules
arbitrarily, we have on average to look at two rules (i.e., 9.1% of all rules)
before we find both faults using Tarantula or Jaccard, and three rules (or
13.6%) using Ochiai or DStar.

3.2 Rule Spectra

We can informally define a rule spectrum as the set of all rules R ⊆ P that are
applied when a word w in the test suite is parsed. For example, consider
the parse tree (see Section 2.1.1) in Figure 3.3 resulting from parsing the
input w = program x = {x = (x);} . (i.e., testcase #4) using GToy as shown
in Figure 3.1. We add to R all non-leaf nodes of the parse tree and get R
= {prog:1, block:3, stmt:5, expr:3, expr:4}. However, which rules are actually
applied depends on the nature of the parser, in particular when it rejects
w. We therefore first formalize our intuition in terms of generic derivations,
and then concretise it in Sections 3.3 and 3.4 for LL and LR parsers.

For accepted words the formal definition of rule spectra directly follows
our intuition; note that a word w ∈ L(G) can induce multiple rule spectra
iff G is ambiguous.

Definition 3.2.1 (positive rule spectrum). If ∆ = S ⇒p1 α1 ⇒p2 α2 ⇒p3

· · · ⇒pn αn = w, then R =
⋃

i{pi} = rules(∆) is called a positive rule spec-
trum for w.

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

3.2. RULE SPECTRA 49

Note that ∆ = S⇒∗ w is a maximally viable |w|-prefix bounded deriva-
tion (see Section 2.1.2) for w, since w ∈ L(G). We can use this observation
as a starting point for the definition of spectra in cases where w /∈ L(G):
we consider all rules of a maximally viable k-prefix bounded derivation
∆ for w, i.e., all rules that have been applied to the left of the error posi-
tion. However, in contrast to the positive case, where there is no frontier, in
the negative case we must also consider the frontier rules because the error
could be either in the rule in ∆ that introduced the frontier, or in any of ∆’s
frontier rules themselves. Consider for example the situation where we are
trying to parse w = program x = {while x do sleep;}. (i.e., test case #14)
with the faulty variant G′Toy

. This fails at sleep because G′Toy
expects body

to be a block and sleep is a stmt. The maximal viable prefix u of w is thus
u = program x = {while x do, with v = {};}., a possible right comple-
tion so that uv ∈ L(G′Toy

). One (and in this case the only possible) maximal
k-prefix bounded derivation with k = 7 for w is

∆ = prog⇒prog:1 program id = block .
⇒block:3 program id = { stmts } .
⇒stmts:2 program id = { stmt } .
⇒stmt:3 program id = { while expr do block } .
⇒expr:4 program id = { while id do block } .

with the frontier symbol block and rules(∆) = {prog:1, block:3, stmts:2, stmt:3,
expr:4}. We can presume that the fault is in stmt:3 (where it was indeed
introduced) but with the information at hand we cannot rule out that any of
the block-rules is at fault–for example, block:4 could have been meant to be
of the form block→ sleep; .

SFL resolves this uncertainty by computing the suspiciousness scores
over many spectra, but this requires us to include all possible fault locations
in the (negative) spectra. Hence, we get the following formal definition:

Definition 3.2.2 (negative rule spectrum). Let w = uv /∈ L(G) with max-
imal viable k-prefix u, and S ⇒p1 α1 ⇒p2 α2 ⇒p3 · · · ⇒pn uXα be a
maximally viable k-prefix bounded derivation for w with frontier X. Then
R =

⋃
i{pi} ∪ closure(PX) is called a negative rule spectrum for w.

Note that this is a "loose" definition in the sense that a w /∈ L(G) may
induce several different negative spectra, since there can be different max-
imally viable k-prefix bounded derivations for w, with different right com-
pletions and frontiers. Note also that Definition 3.2.2 can be modified to
subsume the "positive" and "negative" definitions, but we keep the cases
apart for simplicity.

Stellenbosch University https://scholar.sun.ac.za

50 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

3.3 Spectra for Recursive-descent LL Parsers

Since LL parsers build the maximally viable derivation ∆ top-down, left-
to-right, every expansion step αi ⇒pi αi+1 ∈ ∆ adds the corresponding
rule pi to the spectrum, whether the derivation ends in success or not. In a
recursive-descent parser, each rule is implemented by its own parsing func-
tion, and each derivation step corresponds to a call to one of these func-
tions. Hence, a rule spectrum includes the set of parse functions entered
at least once in a derivation. This holds for both valid and invalid words,
but for an invalid word (i.e., w′ /∈ L(G)), there is at least one parse function
that was entered and never exited successfully. However, for an invalid
word, this set of parse functions does not necessarily include the frontier
rules. Consider for example an LL(1)-grammar with the rules A → αBγ
and B → β1 | . . . | βn, and a maximally viable derivation S k⇒ ∗w uAγ for
w = uav with a /∈ first(B). The parse function for A checks a against all
b ∈ first(βi) before calling the parse function for the respective alternative
of B, but since a /∈ first(B), none of them will actually be called and added
to the spectrum. We must therefore modify the parser’s error handling rou-
tines to add the corresponding frontier rules explicitly. Note also that an
LL(1)-parser only explores a single maximally viable derivation ∆ for each
w /∈ L(G) and we therefore only get a single negative spectrum. For LL(k)-
parsers with k > 1, the derivation may not even be maximal because the
parser may detect the syntax error before actually reaching the error loca-
tion. The collected rules may thus under-approximate the negative spectra,
especially if the definition of frontier rules is not adapted properly to se-
quences of grammar symbols.

JavaCC. In principle, spectrum collection is a simple logging task that can
be implemented easily. For JavaCC, which generates straightforward recursive-
descent LL(k) parsers from a given grammar specification, we found it in-
deed relatively easy to modify the generator source code itself, and to add
code for the grammar spectra extraction task as a side effect to parser gener-
ation. This allows us full control and management of individual rule alter-
native resolution. JavaCC offers advanced top-down parsing features like
localized lookahead configurations, i.e., users can explicitly set a value of
k > 1 for portions of a grammar that are not within the LL(1) parsing capa-
bilities, thereby making the generated parser LL(k) for only those portions.
Our evaluation, however, focuses on the default LL(1) configuration.

ANTLR. ANTLR, in contrast, generates adaptive LL(*) parsers that use un-
bounded look-ahead, which complicates the structure of the parse func-
tions, and thus in turn the spectra extraction. ANTLR provides runtime
support to automate collection of grammar spectra through tree walkers
(via generated listener and visitor interfaces). Figure 3.4 shows an overrid-
den listener method that enables spectrum collection using ANTLR’s de-

Stellenbosch University https://scholar.sun.ac.za

3.4. SPECTRA FOR TABLE-DRIVEN LR PARSERS 51

1 @Override
2 publ ic void enterEveryRule (ParserRuleContext c t x) {
3 /* index of matched r u l e (i . e . , non−terminal) */
4 i n t index = c t x . getRuleIndex () ;
5 /* a l t e r n a t i v e of matched r u l e */
6 i n t a l t e r n a t i v e = c t x . getAltNumber () ;
7 S t r i n g [] r u l e s = parser . getRuleNames () ;
8 spectrum . add (r u l e s [index]+ " : "+ a l t e r n a t i v e) ;
9 }

Figure 3.4: ANTLR tree walker for spectrum collection

fault error recovery strategy. However, this only works when ANTLR actu-
ally completes the parse and builds a tree. ANTLR’s error recovery strategy
allows it to do so in most cases, but this means that rules used after any
error recovery will be mis-classified in the spectrum.1

As an alternative, we therefore turned off error recovery, forcing the
parser to bail out without returning a parse tree when it encounters the first
syntax error. We then used aspect-oriented programming [73] to track all
calls to ANTLR’s internal enterOuterAltNum method (see Figure 3.5) that
sets the rule and alternative fields in the tree. In this way, we can (in prin-
ciple) extract spectra conforming to Definitions 3.2.1 and 3.2.2. In prac-
tice, however, we encountered two problems that can cause the extracted
spectra to be wrong. First, ANTLR’s adaptive LL(*) parsing mechanism
can cause it to raise a syntax error with unbounded lookahead (typically a
no viable alternative error) without actually entering the parse function
for the corresponding rule, so that frontier rules may be missing. Second,
ANTLR’s tracking of rule applications is wrong2 for grammars that contain
left-recursive rules.

The adaptive LL(*) parsing mechanism also makes it difficult to track
which tokens have been seen; our attempts at an extension to collect item
spectra were brittle and unreliable, so that we do not use ANTLR in our
evaluation of item-level localization (see Chapter 4).

3.4 Spectra for Table-driven LR Parsers

In table-driven LR parsing, there are no parse functions that could be tracked.
Instead, a small parser core interprets the LR tables and maintains an ex-
plicit state stack, where each state represents a set of items {A → α • β}.
The application of a rule is then carried out by the two main operations

1It should be noted this requires the compilation option
-DcontextSuperClass=RuleContextWithAltNum in order to get the right alternative
for a matched rule. The call to getAltNumber() (in line #5) returns the default value 0
otherwise.

2i.e., the call to enterOuterAltNum is missing, see the open issue #2222

Stellenbosch University https://scholar.sun.ac.za

52 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

1 pointcut enterRuleAlt (ParserRuleContext ctx , i n t altNum , Parser
parser) :

2 c a l l (void Parser . enterOuterAlt (ParserRuleContext , i n t)) &&
args (ctx , altNum) && t a r g e t (parser) ;

3
4 before (ParserRuleContext ctx , i n t altNum , Parser parser) :
5 enterRuleAlt (ctx , altNum , parser) {
6 S t r i n g [] r u l e s = parser . getRuleNames () ;
7 spectrum . add (r u l e s [c t x . getRuleIndex ()]+ " : "+altNum) ;
8 }

Figure 3.5: Parser aspect that tracks internal calls to enterOuterAltNum.

on the stack: shift and reduce. For a valid word, we can rely simply on
the reduce operation to extract the rule spectrum, since all rule applications
end successfully with a reduction. For invalid words, we use the reduce
operation to capture the rules applied fully to the left of the error position,
i.e., at the viable prefix, but we also need to capture the partially applied
rules and the frontier rules. These are both reflected in the states that re-
main on the stack when the parser encounters an error. The frontier rules
are by construction given by the non-kernel items of the state at the top of the
stack, while each kernel item A → α • β at the top of the stack represents
a partially applied rule, with the yield of each βi describing the prefixes of
possible right continuations v′ (see Definition 3.2.2).

Table 3.2 shows CUP’s parse stack when it uses the faulty grammar G′Toy

to parse the test case program x = { while x do sleep; }. and encoun-
ters the syntax error at sleep. We get expr:4 as result of a complete rule
application at the reduce operation in state 25. The non-kernel items at the
top of the stack give us the frontier rules {block:1, block:2, block:3, block:4}
while the single kernel item gives us stmt:3.

Furthermore, partially applied rules are associated with the kernel items
from states further down on the stack; we therefore traverse the stack and
extract these. Note that we do not extract any rules that are associated with
non-kernel items only because these rules have not been applied even par-
tially, as the designated position is at the beginning of the rule. In the ex-
ample, we get the rules {prog:1, block:1, block:2, block:3, block:4, stmt:3, expr:1,
expr:2} from this stack traversal; note that the four block-rules are logged
again.

Note also that sometimes, some rules are extracted from kernel items
A→ α • β even though they cannot be applied in a maximally viable k-prefix
bounded derivation, such as in this example, the two expr rules in state 50.
Here, our implementation is an over-approximation of Definition 3.2.2 but
we show in our evaluation that this does not necessarily lead to poor local-
ization performance. The extraction of rule spectra that matches the defini-
tion precisely would require some extra bookkeeping, as it requires further

Stellenbosch University https://scholar.sun.ac.za

3.4. SPECTRA FOR TABLE-DRIVEN LR PARSERS 53

Table 3.2: CUP parse stack when encountering the syntax error while parsing the
test case program x = {while x do sleep;}. with G′Toy

. State 25 (shown in gray)
is popped off the stack after reduction.

state corresponding kernel items corresponding non-kernel items
2 prog→ program • id = block .
3 prog→ program id • = block .
4 prog→ program id = • block . block→ • { decls stmts }

block→ • { decls }

block→ • { stmts }
block→ • { }

5 block→ { • decls stmts } decls→ • decls decl ;
block→ { • decls } decls→ • decl ;
block→ { • stmts } decl→ • bool
block→ { • } decl→ • int

stmts→ • stmts stmt ;
stmts→ • stmt ;
stmt→ • sleep
stmt→ • if expr then stmt else stmt
stmt→ • while expr do block
stmt→ • id = expr
stmt→ • block
block→ • { decls stmts }
block→ • { decls }

block→ • { stmts }
block→ • { }

8 stmt→ while • expr do block expr→ • expr = expr
expr→ • expr + expr
expr→ • (expr)
expr→ • id
expr→ • num

25 expr→ id •
50 stmt→ while expr • do block

expr→ expr • = expr
expr→ expr • + expr

51 stmt→ while expr do • block block→ • { decls stmts }
block→ • { decls }

block→ • { stmts }
block→ • { }

stack unwinding to filter out items that cannot be applied in a viable k-prefix
bounded derivation. We leave this for future work.
CUP. Since CUP does not provide the required logging capabilities, we
modified this to the table interpreter accordingly. For the rule spectra and
the plain item spectra (see Chapter 4), we added a simple stack traversal to
the table interpreter that replaces the normal error handling routine which

Stellenbosch University https://scholar.sun.ac.za

54 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

may modify the stack. We collect the rules in the items in each state by
analyzing CUP’s output when it builds the parse tables.

3.5 Synthetic Spectra

Sections 3.3 and 3.4 focused on the traditional, and perhaps the most com-
mon use case of grammar development, that of developing grammars to use
as an input to compiler-compiler tools. We described how these tools can be
extended to extract grammar spectra for fault localization purposes. How-
ever, applications such as grammar-based fuzzing take a more general view.
Here, the grammar is not implemented by the parser, but seen as an abstract
model for the input domain of a system under test. In such applications, it
is often much harder to obtain a standalone parser that can be extended to
produce spectra for inputs. However, we can take advantage of automatic
test suite generation and construct synthetic spectra directly from individual
test cases derived from the grammar G, i.e, simply the rules used to derive
the inputs (see Definition 3.2.1). We also need an oracle O that is capable of
answering membership queries, i.e., to confirm whether test cases generated
from the grammar are (not) in the same language (L(O)) described by the
oracle. Here a test case w fails if w ∈ L(G) but w /∈ L(O) or if w /∈ L(G)
but w ∈ L(O). This setup is also used in popular grammar learning (see
Section 6.5 for more details) algorithms [11, 27].

3.6 Evaluation

We evaluate our method over grammars with seeded faults, as well as real
world grammars and student grammars submitted in compiler engineer-
ing courses that contain real faults. In this section, we aim to answer the
following research questions that we introduced in Section 1.4.

RQ1a: How effective are fault localization techniques based on extracted
rule spectra in identifying seeded single faults in grammars?

RQ1b: How effective are fault localization techniques based on synthetic
spectra in identifying seeded single faults?

RQ1c: How effective are fault localization techniques in identifying real
faults in student grammars that possibly contain multiple faults?

RQ1d: How effective does rule-level fault localization remain for large gram-
mars?

Stellenbosch University https://scholar.sun.ac.za

3.6. EVALUATION 55

3.6.1 Effectiveness in Identifying Seeded Single Faults
(RQ1a)

Experimental Setup

Base grammars. We used the grammar of a small artificial programming
language called SIMPL as the basis for these experiments. SIMPL was orig-
inally designed for use in a second-year computer architecture course at
Stellenbosch University, where students were given an LL(1) grammar for
SIMPL in EBNF format, and had to manually implement a recursive-descent
parser. We manually eliminated the EBNF operators for this grammar by
adding new BNF rules, in order to simplify the mutation process.

For ANTLR (v4.7.2), we left-factorized the BNF version and eliminated
left-recursive rules to minimize the effect of its adaptive LL(*) parsing mech-
anism, which can lead to imprecise spectra (see the discussion in Section 3.3).
The resulting grammar contains 84 rules, 42 non-terminal symbols, and
47 terminal symbols.

JavaCC (v7.0.5) also requires left-factorization and left-recursion elimi-
nation; we used the ANTLR version as a starting point, but used a slightly
different representation of inner alternatives. This version contains 93 rules,
49 non-terminal symbols, and 47 terminal symbols.

CUP (v0.11b) requires the elimination of the EBNF extensions; this ver-
sion was developed independently by a student assistant directly from the
EBNF version. It contains 80 rules, 32 non-terminal symbols, and 47 termi-
nal symbols. The three baseline grammars pass all tests in the different test
suites (see below).
Mutation operators. We mutated the grammars by blindly applying indi-
vidual symbol edit operations (deletion, insertion, substitution, and trans-
position) at every position on the right-hand side of every rule of the gram-
mars. We only applied a single mutation to derive each mutant, to ensure
that each mutant contains at most one fault. We discarded all grammar mu-
tants that do not allow the parser generator to produce a parser (e.g., by
introducing indirect left-recursion in an ANTLR grammar). This leaves us
with 30821 mutants for ANTLR, 36443 mutants for JavaCC, and 26490 mu-
tants for CUP.
Test suites. We then executed each mutant on four different test suites de-
rived from the original EBNF form of the SIMPL grammar. The first two test
suites, rule and cdrc, contain only positive test cases. They are constructed
according to the rule and cdrc coverage criteria [82], respectively, and con-
tain 43 and 86 test cases, respectively. Note that rule is a proper subset of
cdrc. large is a very large, varied test suite that contains 2964 positive tests
and 32157 negative tests. The positive tests are constructed according to
four different coverage criteria, (bfs2, step6, and derivable [150] and adjacent
pair coverage, respectively), developed to produce diverse test suites. The

Stellenbosch University https://scholar.sun.ac.za

56 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

negative tests are constructed using token mutation over the rule test suite,
and using mutation of the rules themselves [130]. instructor refers to the test
suite the instructor used to grade the student submissions. It comprises 20
(syntactically) positive and 61 negative tests.
Test execution. We consider a grammar mutant killed by a test suite if the
generated parser fails on at least one test case; however, we consider a mu-
tant not killed if the parser fails on all test cases, because the metrics then
become undefined or degenerate, as discussed in Section 2.4.2. For ANTLR,
we also considered a mutant as not killed if it requires the application of a
left-recursive rule, because the computed grammar spectra are known to be
imprecise (see the discussion in Section 3.3).
Spectrum extraction and ranking. For each grammar mutant killed by the
test suite we ordered the rules by the scores produced by each of the ranking
metrics and computed the mutated rule’s predicted rank. We resolved ties
using the middle rank, as discussed in Section 2.4.2.

Note that we used the location at which we applied the mutation opera-
tion as "true" fault location. However, as described in Section 3.6, the proper
"blame assignment" is not always as clear, in particular when the mutations
impact the first-sets of rules. This can impact the quality of the predictions.
Synthetic Spectra. We used the same SIMPL grammar mutants for ANTLR
to generate rule, cdrc, and large test suites from each mutant in order to an-
swer RQ1b. The ANTLR grammar from which these mutants were derived
acts as a "teacher". Our grammar-based test case generator tool gtestr [150]
ships with a converter that translates ANTLR grammars to their equiva-
lent gtestr grammars. We discarded mutants with unreachable non-terminal
symbols and those that contain symbols for which gtestr cannot compute the
yield. This leaves us with 27894 mutants.

Experimental Results

Figures 3.6 to 3.9 show the results of these fault seeding experiments as a
series of boxplots. Each boxplot summarizes the ranks predicted by the
corresponding metric for the mutated (i.e., faulty) rules, given a specific
parsing method and test suite. A perfect prediction would be to rank the
faulty rule in the grammar as one, i.e., the most suspicious rule, for all test
cases. The boxes show the Q3/Q1 interquartile range of the ranks, i.e., the
upper end of the box corresponds to the 75th percentile (i.e., in 75% of the
cases the faulty rule is ranked better than the corresponding value on the
y-axis) while its lower end corresponds to the 25% percentile. The median
is indicated by a dotted line across the box. The "whiskers" extend from the
5th to the 95th percentile. Table 3.3 contains more details.

While the details change with the applied parsing technology and rank-
ing metric, and the underlying test suite, the boxplots and Table 3.3 show

Stellenbosch University https://scholar.sun.ac.za

3.6. EVALUATION 57

overall positive results. On average, the metrics rank the faulty rules at
∼22% of all rules, with better results for the large test suite (∼15%) and
worse results for the instructor test suite (∼31%). The median is typically at
2.5–5% (except Tarantula under instructor at ∼17%), and so much smaller
than the mean. Hence, in more than half of the cases, the metrics rank the
faulty rule as one of the top five most suspicious rules. Furthermore, in 10–
40% of the cases they correctly pinpoint the faulty rule, in 15–58% of the
cases, the faulty rule is ranked within the top three most suspicious rules
and in up to 65% of the cases the faulty rule is ranked within the top five
most suspicious rules.

A few high-level observations can be made. First, fault localization works
better for JavaCC than for both ANTLR and CUP: for JavaCC we universally
achieve lower mean and median values, independent of the test suite and
the ranking metric, and typically pinpoint a higher fraction of the observed
faults (with Tarantula the only metric with mixed results that are are some-
times better for CUP than the other tools). The #1/#3/#5 values also seem
to be in favour of CUP, with ANTLR giving us slightly lower values across
the board.

Second, ANTLR’s error correction introduces noise into the spectra that
compromises the quality of the fault localization. ANTLR with bail-out on
error uniformly produces better results than ANTLR∗ with error correction,
although the differences are smaller than between ANTLR and CUP.

Third, the difference between Ochiai, Jaccard, and DStar is negligible,
but all three outperform Tarantula. The only exception is for the large test
suite, where Tarantula produces the tightest interquartile range and the
lowest mean (although not the lowest median nor the highest fraction of
top-ranked faults). This follows the observation that Tarantula does not
particularly get overwhelmed by a high number of failing tests compared
to the other three metrics which under such scenarios typically assign the
non-faulty rules (mostly dominating ones) executed in most failing tests the
highest rank.

Fourth, the localization performance depends strongly on the size and
variance of the test suite. The difference of the results between the rule and
cdrc test suites that contain very similar positive test cases is marginal, de-
spite the fact that cdrc includes rule. In contrast, both of them induce sub-
stantially better results than the manually constructed instructor test suite
whose size is between both of them. This also indicates that it is hard to
manually construct test suites that are well suited for fault localization. large
has the highest fraction of localized faults compared to the other test suites,
and the smallest mean values.

Stellenbosch University https://scholar.sun.ac.za

58 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(a) Results for rule test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(b) Results for cdrc test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(c) Results for large test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(d) Results for instructor test suite.

Figure 3.6: Fault seeding experiments over SIMPL grammar using JavaCC. Rows
show results for different test suites, top: rule (43 positive tests), cdrc (86 positive).
Bottom: large (2964 positive, 32157 negative), instructor (20 positive, 41 negative).

Stellenbosch University https://scholar.sun.ac.za

3.6. EVALUATION 59

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(a) Results for rule test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(b) Results for cdrc test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(c) Results for large test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(a)Results for instructor test suite.

Figure 3.7: Results of fault seeding experiments over SIMPL grammar using
ANTLR (without error correction). Boxplot layout as in Fig. 3.6.

Tarantula
Ochiai

Jacca
rd

DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(a) Results for rule test suite.

Tarantula
Ochiai

Jacca
rd

DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(b) Results for cdrc test suite.

Tarantula
Ochiai

Jacca
rd

DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(c) Results for large test suite.

Tarantula
Ochiai

Jacca
rd

DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(d) Results for instructor test suite.

Figure 3.8: Results of fault seeding experiments over SIMPL grammar using
ANTLR (with default error correction). Boxplot layout as in Fig. 3.6.

Stellenbosch University https://scholar.sun.ac.za

60 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(a) Results for rule test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(b) Results for cdrc test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(c) Results for large test suite.

Tarantula Ochiai Jaccard DStar
0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 o
f m

ut
an

t (
%

)

(d)Results for instructor test suite.
Figure 3.9: Results of fault seeding experiments over SIMPL grammar using CUP.
Boxplot layout as in Fig. 3.6.

Stellenbosch University https://scholar.sun.ac.za

3.6. EVALUATION 61

Ta
bl

e
3.

3:
D

et
ai

le
d

ru
le

-l
ev

el
re

su
lt

s
of

fa
ul

ts
ee

di
ng

ex
pe

ri
m

en
ts

ov
er

SI
M

PL
gr

am
m

ar
s.

x̃
an

d
x̄

de
no

te
th

e
m

ed
ia

n
an

d
m

ea
n

ra
nk

,
re

sp
ec

ti
ve

ly
,o

f
th

e
se

ed
ed

fa
ul

t.
#1

de
no

te
s

th
e

nu
m

be
r

of
ca

se
s

w
he

re
th

e
m

et
ri

c
ra

nk
ed

th
e

se
ed

ed
fa

ul
t

as
m

os
t

su
sp

ic
io

us
,#

3
an

d
#5

de
no

te
th

e
nu

m
be

r
of

ca
se

s
w

he
re

th
e

se
ed

ed
fa

ul
tw

as
ra

nk
ed

in
th

e
To

p
3

an
d

To
p

5,
re

sp
ec

ti
ve

ly
.

Th
e

fir
st

bl
oc

k
co

nt
ai

ns
th

e
m

ai
n

re
su

lt
s

to
an

sw
er

R
Q

1a
,t

he
se

co
nd

bl
oc

k
de

m
on

st
ra

te
s

th
e

re
su

lt
s

fo
r

po
si

ti
on

-o
ne

m
ut

an
ts

.
Th

e
th

ir
d

bl
oc

k
co

nt
ai

ns
th

e
re

su
lt

s
fo

r
sy

nt
he

ti
c

sp
ec

tr
a.

Ta
ra

nt
ul

a
O

ch
ia

i
Ja

cc
ar

d
D

St
ar

ki
lle

d
x̃

x̄
#1

#3
#5

x̃
x̄

#1
#3

#5
x̃

x̄
#1

#3
#5

x̃
x̄

#1
#3

#5
A

N
TL

R
ru

le
24

32
6

3.
6

22
.4

62
35

12
63

8
13

63
3

1.
8

21
.5

71
66

14
87

4
15

06
3

1.
8

21
.5

71
69

14
87

5
15

06
4

1.
8

21
.5

71
60

14
86

4
15

05
9

(3
08

21
)

cd
rc

24
48

5
3.

0
22

.5
65

59
12

71
4

13
80

4
1.

8
21

.8
72

73
15

02
3

15
26

2
1.

8
21

.9
72

74
15

02
3

15
26

0
1.

8
21

.9
72

67
15

01
0

15
15

5
la

rg
e

30
53

9
5.

4
18

.9
83

27
13

15
2

16
28

3
3.

6
18

.9
87

49
15

32
3

16
98

8
3.

6
18

.7
86

42
15

71
7

17
65

6
4.

8
21

.3
85

05
14

81
2

16
42

5
in

st
r

26
16

2
14

.9
32

.6
40

63
75

60
10

34
2

2.
4

28
.3

70
32

14
10

1
14

88
5

3.
0

28
.5

68
49

13
89

5
14

68
1

2.
4

28
.3

70
29

14
43

4
14

88
9

A
N

TL
R
∗

ru
le

24
29

0
4.

2
22

.4
57

09
11

25
8

13
58

8
2.

4
21

.1
67

70
15

17
1

15
41

3
2.

4
21

.2
67

71
15

17
2

15
36

5
2.

4
21

.2
67

50
15

12
0

15
34

9
cd

rc
24

44
9

4.
2

22
.5

58
91

11
50

2
13

89
9

2.
4

21
.4

68
96

15
30

4
15

64
8

2.
4

21
.4

68
96

15
29

1
15

59
5

2.
4

21
.5

68
87

15
28

6
15

51
9

la
rg

e
30

50
1

4.
8

19
.0

85
54

13
80

3
17

93
7

4.
2

19
.5

73
01

14
33

1
17

60
5

4.
2

19
.3

78
15

14
06

3
17

94
6

4.
8

21
.8

70
86

13
79

1
16

86
1

in
st

r
26

12
6

22
.6

39
.2

21
42

48
00

68
53

7.
1

30
.7

45
94

10
31

5
11

92
2

7.
1

31
.0

45
07

10
00

3
11

52
4

7.
1

30
.6

49
19

10
85

1
11

93
0

Ja
va

C
C

ru
le

28
44

5
3.

8
17

.9
69

79
14

00
1

17
74

9
1.

6
16

.5
86

50
19

33
8

19
76

2
1.

6
16

.5
86

48
19

33
6

19
75

8
1.

6
16

.6
86

37
19

20
5

19
68

3
(3

64
43

)
cd

rc
29

11
9

2.
7

16
.5

86
64

15
60

2
19

00
8

1.
6

15
.2

10
39

1
20

12
2

20
74

2
1.

6
15

.2
10

39
1

20
12

1
20

74
1

1.
6

15
.5

98
07

19
48

1
20

18
7

la
rg

e
32

34
8

3.
2

12
.5

10
50

5
16

82
9

19
44

3
2.

2
9.

0
12

10
5

20
81

1
23

30
6

2.
2

8.
6

12
31

9
20

96
7

23
79

8
2.

2
9.

7
12

02
5

21
01

0
23

31
5

in
st

r
30

83
7

17
.7

32
.4

24
41

70
26

96
96

4.
3

27
.8

63
66

14
22

4
16

14
6

4.
8

26
.9

62
62

13
99

9
16

06
7

4.
3

27
.7

63
38

14
18

2
16

10
0

C
U

P
ru

le
23

52
6

3.
2

24
.3

77
86

12
37

0
13

38
5

2.
5

23
.7

99
05

13
86

5
13

90
9

2.
5

23
.7

99
05

13
86

6
13

90
9

2.
5

23
.7

99
05

13
85

4
13

89
7

(2
64

90
)

cd
rc

25
29

7
3.

2
24

.6
83

72
13

48
7

14
57

3
1.

9
24

.0
10

49
5

14
90

3
14

95
5

1.
9

24
.0

10
49

5
14

90
5

14
95

5
1.

9
24

.0
10

49
3

14
89

2
14

93
7

la
rg

e
26

42
9

3.
8

11
.9

86
25

15
46

7
18

66
6

2.
5

14
.1

10
09

7
14

99
0

16
57

5
3.

8
14

.2
93

26
14

90
5

17
62

4
3.

8
15

.9
10

24
5

14
56

4
15

93
8

in
st

r
25

40
4

13
.9

35
.6

26
79

72
05

97
92

4.
4

32
.9

68
59

11
46

0
13

17
9

5.
1

33
.3

64
75

10
61

0
12

99
3

3.
8

32
.8

73
99

12
96

5
13

82
1

A
N

TL
R

ru
le

-
55

.4
48

.8
14

5
10

95
12

97
55

.4
49

.3
17

0
87

5
10

42
55

.4
49

.3
17

3
87

6
10

43
55

.4
49

.3
16

4
86

8
10

38
cd

rc
-

56
.5

49
.9

20
6

10
28

12
41

56
.5

50
.3

20
7

90
6

10
88

56
.5

50
.4

20
8

90
6

10
86

56
.5

50
.5

20
1

89
3

98
0

la
rg

e
-

8.
3

23
.5

30
03

45
29

56
79

31
.0

32
.7

15
47

24
60

29
07

22
.0

31
.4

16
91

29
46

36
56

38
.1

38
.7

10
95

18
94

23
27

in
st

r
-

79
.8

62
.0

30
7

10
42

14
14

79
.8

63
.3

38
7

11
76

12
36

79
.8

63
.3

38
0

11
75

12
40

79
.8

63
.8

36
9

11
39

11
82

JA
VA

C
C

ru
le

-
53

.8
37

.8
94

0
25

11
31

43
53

.8
37

.2
17

06
30

41
33

61
53

.8
37

.2
17

04
30

39
33

57
53

.8
37

.4
16

93
29

08
32

82
cd

rc
-

54
.8

34
.5

22
31

34
37

40
37

54
.8

34
.1

27
93

36
77

39
87

54
.8

34
.1

27
93

36
77

39
87

54
.8

34
.7

22
09

30
36

34
32

la
rg

e
-

4.
3

15
.5

41
72

61
63

73
93

6.
5

17
.5

43
21

58
79

64
92

3.
2

14
.7

49
00

69
21

76
93

8.
1

19
.5

41
22

56
61

61
41

in
st

r
-

59
.1

53
.6

17
9

12
35

17
94

61
.8

52
.4

94
7

23
11

27
37

61
.8

52
.2

92
0

22
90

25
95

62
.4

52
.5

91
4

22
44

26
51

C
U

P
ru

le
-

54
.4

53
.6

30
5

39
4

43
5

54
.4

53
.7

29
6

38
7

42
0

54
.4

53
.7

29
6

38
8

42
0

54
.4

53
.7

29
6

37
9

41
8

cd
rc

-
55

.1
55

.2
34

2
42

9
45

8
55

.1
55

.3
32

7
40

4
44

5
55

.1
55

.3
32

7
40

6
44

5
55

.1
55

.3
32

7
40

1
43

3
la

rg
e

-
6.

3
19

.9
22

10
38

85
46

56
27

.2
29

.8
10

67
15

87
19

55
19

.0
28

.0
12

42
25

67
32

48
31

.6
34

.3
81

3
10

22
12

51
in

st
r

-
81

.0
72

.9
26

3
43

6
50

1
81

.0
73

.5
32

4
43

5
46

1
81

.0
73

.6
32

7
43

6
46

0
81

.0
73

.7
32

2
43

1
45

6
sy

nt
he

ti
c

ru
le

23
56

3
1.

8
5.

1
98

94
14

80
5

20
19

7
1.

2
2.

0
13

01
2

22
77

2
23

08
5

1.
2

2.
0

13
01

2
22

77
2

23
08

5
1.

2
1.

9
13

01
4

22
78

0
23

10
5

cd
rc

25
75

6
1.

8
4.

7
10

76
1

17
28

4
22

14
1

1.
2

2.
1

13
58

2
24

18
9

24
97

8
1.

2
2.

1
13

56
7

24
17

0
24

96
4

1.
2

2.
1

13
58

3
24

21
2

24
99

5
la

rg
e

27
53

8
2.

4
9.

0
12

86
6

19
08

3
22

05
8

1.
2

2.
8

16
48

2
24

18
7

25
29

6
1.

2
3.

3
15

76
6

22
97

2
24

72
7

1.
2

2.
7

16
62

5
24

22
3

25
32

0

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

62 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

RQ1a: Our fault localization based on rule spectra is indeed effective in
identifying faults in fault-seeded grammars. In more than half of the cases,
the fault is localized within the top three rules. In about 10–40% of the
cases, the fault is uniquely identified as the most suspicious rule. We ob-
serve also that Ochiai, Jaccard and DStar, by and large, produce identical
rankings. They also outperform Tarantula.

Results for Position-one Mutants. The application of a rule, no matter the
parsing technology used, heavily relies on lookahead symbols. These looka-
head tokens are derived from the first and follow sets, at least in the case of
our target LL(1) and LALR(1) parsers. Therefore, it becomes a challenge to
correctly localize position-one mutants as the mutated rules may never be
executed. The results from the second block of Table 3.3 demonstrate how
hard it indeed is to correctly localize these mutants. Specifically, in sub-
ject grammars in which the mutation operators have been applied to the
first position on the right hand-side of a rule, the median rank of the faults
range between 50–82%, i.e., the localization performance can differ by 20%
points between mutants at the first position and other symbols. Moreover,
the average ranks are lower than median ranks, which means there are only
a few cases where the fault is localized in fewer than half of the rules. This
is also confirmed by the #1/#3/#5 values; where in less than 20% of the
cases, the fault is localized within the top five rules across the board. The
large test suite is an exception, with lower median values (≤ 27%) because
generation of negative test cases from large in part follow similar mutation
strategies used to seed faults in these subject grammars.

Threats to validity. In addition to the usual concerns about construct (i.e.,
implementation and data collection errors) and statistical conclusion va-
lidity, we see several threats to the validity of generalizing our observa-
tions beyond the experimental setup, e.g., to other ranking metrics, pars-
ing methods, grammars, or test suites. Our fault seeding experiments are
based on a single grammar; since test suite construction, mutant construc-
tion, and spectrum collection all depend on the structure of the grammar,
different grammars may yield different results. We encountered this when
we used an ANTLR version that was not left-factorized, which triggered the
rule tracking issues described in Section 3.3 and led to incomplete spectra
that distorted the results. Our fault seeding also includes mutations at the
first symbol of a rule, which may produce non-LL(1) mutants that also trig-
ger the rule tracking issues and so distort results; preliminary analysis has
shown that the localization performance can differ by 15 rules (i.e., close
to 20 percentage points) between mutations at the first and at other sym-
bols. However, we used a variety of other grammars on other (non-seeded
faults) experiments, without any substantially different results, which par-
tially mitigates this threat.

Stellenbosch University https://scholar.sun.ac.za

3.6. EVALUATION 63

Gopinath et al. [53] have shown that mutants are not syntactically close
to real faults, but there is evidence that they are nevertheless a valid substi-
tute in many software engineering applications, including fault localization
[71]. However, grammar mutations as we have used here have not been in-
vestigated, and other mutation operations (e.g., adding epsilon-productions
or deleting entire rules) may yield different results. Hence, even though our
localization experiments with student grammars (see Section 3.6.3) show
similar results, care should be taken in generalizing the results above.

The experiments have shown that the localization performance depends
on the test suites and may thus not generalize, despite the differences in
the test suites we have used. The large test suite contains tests that are con-
structed based on the same principle as the mutants (i.e., rule mutation) and
may thus overestimate performance.

3.6.2 Effectiveness on Synthetic Spectra (RQ1b)

The third block in Table 3.3 shows the results of our approach when using
synthetic spectra constructed directly from test cases derived from a gram-
mar under test. We see that our approach remains effective, and in fact,
produces better results. First, on average, the faulty rule is ranked in ∼5%
of the rules, with a slightly worse figure (9.0%) for Tarantula under large
test suite. The median range of 1.2–2.8% means that, in half of the cases,
we only need to look within the top three rules to find the faulty rule. Sec-
ond, interestingly, the fault is uniquely localized in at least 40% of the cases
and in ∼85% of the cases the prediction is within the top five most suspi-
cious rules. Third, as before, Tarantula performs worse than the three other
metrics, with higher median and mean ranks and lower #1/#3/#5 values.

RQ1b: Our rule-level localization based on synthetic spectra is more ef-
fective in identifying single faults in mutants than using grammar spectra
extracted from parsers. The fault is found within the top five rules in al-
most all the cases.

3.6.3 Localization of Real Faults (RQ1c)

In the next set of experiments, we used student submissions (which unsur-
prisingly contain many errors) to compiler engineering courses to see how
well our method performs over grammars with multiple real faults.

Experimental Setup. We used two languages, SIMPL (which we also used
for the fault seeding experiments in Section 3.6.1), and Blaise, another ar-
tificial teaching language of similar syntactic complexity: the instructor’s
version of the grammar has 38 non-terminals, 40 terminals and 75 rules.

Stellenbosch University https://scholar.sun.ac.za

64 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

For SIMPL, we used the same positive test cases as in the large test suite
in Section 3.6.1. For Blaise, we generated tests using the same mechanism;
this comprises 7280 positive and 9119 negative test cases.

Both languages were used in compiler engineering courses. In one course,
the students were given the same EBNF as in the computer architecture
course (in fact, most students were from a cohort that already used SIMPL
in that course), and were asked in two different assignments to use ANTLR
and CUP (or a similar LALR(1) parser generator of their choice) to develop
parsers for SIMPL. We randomly picked ten ANTLR submissions, from
which we discarded two that pass all tests and one that did not produce
a compilable parser. We picked all ten CUP submissions, from which we
discarded three that passed all tests and one that passed none. For Blaise,
the students were given a textual language description and a small set of
short example programs. We randomly picked nine Blaise grammars from
110 submissions, from which we also discarded two that pass all tests. This
leaves us with 20 subject grammars.

We then followed an iterative one-bug-at-a-time (OBA) debugging tech-
nique [165] where we focus our attention on a single first discovered fault,
fix the fault and then re-localize. In each step, we used the Ochiai metric
to compute the suspiciousness scores of the rules. We manually examined
the rules in rank order and used our understanding of the "true" grammars
to identify and repair faulty rules. In each step, we only repaired the top-
ranked faulty rule; note that we made repairs in the lexer as well. After each
repair, we continued with the next iteration, until the grammar under test
passed all test cases.

Experimental Results. Table 3.4 summarizes the results of our evaluation
over student grammars. For each iteration, we show the number of test
cases failed by that grammar version, and the rank of the rule that we iden-
tified as faulty and repaired for the next iteration. Empty cells indicate that
a previous repair allowed the parser to pass all tests.

While we have no guarantee that we always pick the "right" rule for
repair, we can observe for all but one of the grammars the number of failed
test cases decreases with each repair; the exception is #8, where the repair in
iteration 2 triggers more failing test cases. Here, the repair can be seen as the
first step in a multi-step refactoring that temporarily increases the number
of failures, which then drops significantly in the subsequent iterations. Note
also that the final repair of #6 has no associated rank because the error was
actually in the lexer which returned an identifier token instead of the AND-
operator. In other cases, we could identify similar lexical errors via the rules.

The most common issues are around the formal and actual parameter
lists of functions. These cannot be empty, but the textual language specifi-
cation was vague about this, and many students interpreted this differently.
The other fault classes include:

Stellenbosch University https://scholar.sun.ac.za

3.6. EVALUATION 65

Ta
bl

e
3.

4:
R

es
ul

ts
of

it
er

at
iv

e
fa

ul
tl

oc
al

iz
at

io
n

in
st

ud
en

tg
ra

m
m

ar
s

an
d

m
an

ua
lr

ep
ai

r.
#f

ai
ls

ho
w

s
th

e
nu

m
be

r
of

fa
ili

ng
te

st
ca

se
s

in
an

it
er

at
io

n
an

d
ra

nk
sh

ow
s

th
e

ra
nk

of
th

e
m

an
ua

lly
re

pa
ir

ed
ru

le
.

it
er

at
io

n
1

it
er

at
io

n
2

it
er

at
io

n
3

it
er

at
io

n
4

it
er

at
io

n
5

it
er

at
io

n
6

it
er

at
io

n
7

#
la

ng
ua

ge
ty

pe
#f

ai
l

ra
nk

#f
ai

l
ra

nk
#f

ai
l

ra
nk

#f
ai

l
ra

nk
#f

ai
l

ra
nk

#f
ai

l
ra

nk
#f

ai
l

ra
nk

1
SI

M
PL

C
U

P
55

7
1.

5
25

4
1

13
1

1
98

1
2

SI
M

PL
C

U
P

20
6

2
95

2
3

SI
M

PL
C

U
P

49
8

1
40

1
4

SI
M

PL
C

U
P

30
5

5
48

1
5

SI
M

PL
C

U
P

85
4

3
85

4
1

29
5

1
13

9
1

48
2

19
1

5
1

6
SI

M
PL

C
U

P
48

1
7

Bl
ai

se
A

N
TL

R
56

7
2

4
1

2
1

8
Bl

ai
se

A
N

TL
R

10
82

1
53

5
3

72
13

1
35

8
1

43
1

2
1

9
Bl

ai
se

A
N

TL
R

4
3

2
2

10
Bl

ai
se

A
N

TL
R

10
68

1
4

2
2

1
11

Bl
ai

se
A

N
TL

R
38

4
3

1
12

Bl
ai

se
A

N
TL

R
65

4
1

1
1

13
Bl

ai
se

A
N

TL
R

4
2

2
1

14
SI

M
PL

A
N

TL
R

55
5

1
17

0
1

47
2

1
1

15
SI

M
PL

A
N

TL
R

37
4.

5
1

1.
5

16
SI

M
PL

A
N

TL
R

36
1

3
46

1
17

SI
M

PL
A

N
TL

R
39

6
1.

5
11

7
2

81
2

47
1

1
1.

5
18

SI
M

PL
A

N
TL

R
46

2
19

SI
M

PL
A

N
TL

R
35

6
1

23
3

2
1

1
20

SI
M

PL
A

N
TL

R
1

1

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

66 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

(i) the interaction between the parser and lexer, which some students did
not handle well especially in cases involving unary and binary MINUS
operators with the latter subsumed in ADDOP operators;

(ii) token issues such as typographical errors and wrong regular expres-
sions (strings in most cases); and

(iii) a few cases of tool specific issues, e.g., wrongful use of EBNF operators
in ANTLR.

RQ1c: We can conclude that, with the help of OBA, our fault localization
approach remains effective under multiple faults: in all cases the repaired
rule is within the top five rules, and even was the top ranked rule in more
than half of the cases. This translates to a lower average wasted effort
(AWE), the number of rules one has to look before the fault is found, from
across the board.

Threats to validity. This experiment is subject to similar threats to validity
as the one described in the previous section; in particular, the results may
not generalize to other grammars or to other ranking metrics. However, as
mitigation we used a broadly similar setup in the experiments described in
the following section, where we achieved similar results.

Since the setup involves human judgements by the authors, the results
are also subject to possible experimenter bias, human error, and human per-
formance variation. We tried to mitigate against this threat by following an
experimental protocol over unseen grammars, but this was not fully defined
(e.g., rule selection and choice of the cut-off points).

3.6.4 Localization for Large Black-box Systems (RQ1d)

To address questions related to scalability of our approach, we design a case
study where we try to identify parts of a public SQLite grammar that is
known to deviate from the language accepted by the actual SQLite system.
We have retrieved the ANTLR4 SQLite grammar from https://github.
com/antlr/grammars-v4/blob/master/sql/sqlite/ (commit 37a9df3). The
BNF version of the grammar that has been used to generate test queries has
440 rules, 181 non-terminals and 170 terminals. This shows that it is a fairly
large grammar, at almost 5× the size of the SIMPL grammars we used in
Sections 3.6 and 4.4. The black-box system that we used is the SQLITE3
Python module (v2.6.0) that is essentially an API wrapper for a runtime
SQLite library (v3.22.0) written in the C programming language. We then
wrote a simple adaptor that creates a database connection, executes gener-
ated queries and logs each execution outcome.

Stellenbosch University https://scholar.sun.ac.za

https://github.com/antlr/grammars-v4/blob/master/sql/sqlite/
https://github.com/antlr/grammars-v4/blob/master/sql/sqlite/

3.6. EVALUATION 67

We assume that the adaptor provides, on executing each query, the syn-
tactic pass/fail information. Here, we consider a test case to fail if the sys-
tem detects any syntax errors in the input and to pass if the query executes
successfully or if it throws exceptions that lie deeper in the system, beyond
the syntax analysis stage. With the above framework established, it appears
straight-forward to directly invoke our "flipped" version of our method that
uses synthetic grammar spectra derived directly from test cases to iden-
tify deviations. However, it proved impractical to blindly generate and run
queries on the system, despite our sole interest in exercising the parser. In
particular, the system complains of early stage errors such as incomplete
input; perhaps more importantly, since the runtime system is basically a
single-pass compiler, execution stops due to a semantically ill-formed query
before it could complete parsing. Lack of a standalone parser also means
that we cannot directly exercise these generated queries.

To tackle the aforementioned limitations and handle some of the pre-
conditions, the idea is to provide our test generator with predefined and
fixed table- and column-names during query generation. Fortunately, the
language accepted by the SQLite system is composed of different types of
statements, which can be seen as sub-languages, that define, query and ma-
nipulate tables and data in different ways. For example, the symbol sql_stmt
(which is reached directly from the start symbol program) below is a union
of entry points to these sub-languages.

program→ sql_stmt(; sql_stmt)∗
sql_stmt→ . . . | create_table_stmt | . . .

Our generator grammar defines over 20 alternatives for the sql_stmt-rule.
This allows us to model the system effectively by overriding the start rule
and start derivations from each sub-language entry-point. We also fix val-
ues for rules table_name, column_name and database_name by setting allowed
names. For example, Figure 3.10 shows a simplistic code snippet written in
the Prolog programming language which our test suite generation tool uses
as input that sets the start rule to CREATE TABLE related statements (line
#1). The values to set table, column, and database names are given in lines
#3, #5, and #7 respectively. This separation also allows us to handle some
dependencies between statement types, e.g., the DROP TRIGGER statement
requires a successful execution of the CREATE TRIGGER statement.

We therefore wrote a series of models (13 in total) like the one shown
in Figure 3.10. The one in the figure targets the CREATE TABLE related state-
ments and uses the create_table_stmt and create_virtual_stmt rules exclusively
to generate tests. The other twelve models generate tests from the remain-
ing statements. Unlike the model in Figure 3.10, they assume the prior
successful creation of tables, and like the first model, they are equipped
with valid table names and column names. Dependent statement types
are handled by chaining up their corresponding rules with a semicolon

Stellenbosch University https://scholar.sun.ac.za

68 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

1 model : − c r e a t e _ t a b l e _ s t m t | c r e a t e _ v i r t u a l _ t a b l e _ s t m t .
2 %%% s e t the allowed t a b l e names
3 table_name : − ’STAFF ’ | ’DEPARTMENTS ’ | ’ORDERS ’ .
4 %%% s e t the allowed column names
5 column_name : − ’Name ’ | ’ Department ’ | ’Number ’ .
6 %% s e t database name
7 databasename : − ’ databasename ’ .
Figure 3.10: Example model that generates tests from CREATE TABLE statements,
with hard-coded allowed values for table, column and database names.

separator. For example, create_trigger_stmt is always followed by optional
(; drop_trigger_stmt), i.e., model→ create_trigger_stmt(; drop_trigger_stmt)?.
Note that drop_trigger_stmt can also be used independently with an optional
IF EXISTS clause to avoid an error. However, this was less intuitive as it
required meddling with the grammar in order to enforce the clause to al-
ways be present in the DROP TRGGER statements and other highly dependent
statements.

We are aware that this exploitation of the structure of the SQLite gram-
mar targets certain parts of the system and does not exercise all grammar
rules. However, we still managed to cover a large portion of the grammar.
For example, spectra from the model that tests create table related state-
ments are composed of 274 rules that are applied in the generation of the
deriv and bfs2 test suites. The highest number of applied rules in generation
of the test suite by any model is 371.

We then followed a multi-stage fault localization approach where we,
in each stage, use each model to orchestrate the generation of the test suite
TS+, which we then use to localize deviations for the language accepted
by the SQLite system. In each stage, we then used the same OBA tech-
nique [165] in Section 3.6.3, where we again focus our attention on a single
first discovered deviation, manually fix this deviation, and then re-generate
the tests to re-test the SQLite system. In each iteration, we used the Taran-
tula metric to calculate suspiciousness scores for all grammar rules. This
choice of ranking metric is based on the observation that Tarantula seemed
to produce more stable rankings under a high number of test failures. We
examined these rules in their descending order of suspiciousness, starting
with the most suspicious rule, and identified their corresponding syntac-
tic description as per the SQLite official specification available at https://
sqlite.org/syntaxdiagrams.html. We then manually inspected the gram-
mar rule and its corresponding description to identify the cause of devia-
tion. We finally repaired the deviation in the grammar rule and repeated
this process until no further tests failed.

Stellenbosch University https://scholar.sun.ac.za

https://sqlite.org/syntaxdiagrams.html
https://sqlite.org/syntaxdiagrams.html

3.6. EVALUATION 69

Results

Deviation #1. The first model (see Figure 3.10) gave us an initial set of 462
failing tests out of a total of 57656 generated tests. In the first iteration, we
made the following observations. First, Tarantula ranked the rule

expr→ expr (= | == | . . . | IS | IN | . . .) expr

as the most suspicious rule. The rule defines the structure of binary opera-
tors in SQLite. We consulted the official documentation and the correspond-
ing description for expressions, which revealed that the deviation is in the
use of the IN operator. This operator has to be followed by parenthesized
expressions and not by an arbitrary expression, as allowed by the grammar
rule. However, the grammar contains multiple faults (or more precisely,
"deviations"). This is made evident by the fact that the above faulty expr-
rule has not been executed in all failing tests, but in only 456 of those failing
tests.

Since we follow the OBA principle, we first fixed the deviation in the IN
operator. We then found another occurrence of the IN that was correctly
implemented as:

expr→ expr NOT ? IN (select_stmt | expr (, expr)?)

This means that the top-ranked rule expr → expr (. . . | IN | . . .) expr is an
over-approximation fault on the correct use of the IN operator which we
fixed by simply deleting the symbol IN from the rule.
Deviation #2. After the modification, we regenerated the test suites using
the same (first) model and repeated the process. In this iteration, the follow-
ing six tests failed:

create table STAFF as values(0) limit 0
create table STAFF as with STAFF as(select *) values(0) order by ?
create table STAFF as with STAFF as(select *) values(0) limit 0
create table STAFF as values(0) order by ? limit 0
create table STAFF as values(0) order by ?
create table STAFF as with STAFF as(select *) values(0) order by ?limit 0

The SQLite system reports the following syntax error messages each for
each of the test cases above.

near "limit": syntax error
near "order": syntax error
near "limit": syntax error
near "order": syntax error
near "order": syntax error
near "order": syntax error

From the error messages, it is not straightforward where the cause of the
deviation might be; the token) occurs on the correctly consumed prefix

Stellenbosch University https://scholar.sun.ac.za

70 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

before the offending tokens limit and order . The select_stmt-rule3 that
causes the deviation is ranked sixth (out of a total 440 rules).

select_stmt → . . . select_or_vals . . .
(ORDER BY ordering_term(, ordering_term)∗)?
(LIMIT expr ((OFFSET | ,) expr)?)?

select_or_vals→ SELECT . . . result_col . . . FROM table_or_subquery . . .
| VALUES (expr (,expr) ∗)

This deviation is confirmed by the official documentation for the VALUES
clause in a select statement. "There are some restrictions on the use of a VALUES
clause that are not shown on the syntax diagrams:"

• A VALUES clause cannot be followed by ORDER BY.

• A VALUES clause cannot be followed by LIMIT.

We fixed this deviation by transforming the rules to the following,

select_stmt → . . . select_or_vals . . .
select_or_vals→ SELECT . . . result_col . . . FROM table_or_subquery . . .

(ORDER BY ordering_term(, ordering_term)∗)?
(LIMIT expr ((OFFSET | ,) expr)?)?
| VALUES (expr (, expr) ∗)

The transformation pushes down the sequences that capture the ORDER BY
and LIMIT clauses to the end of the first alternative of the select_or_vals-rule.
Deviation #3. In this iteration, we used a model that start derivations from
rules that define the structure of triggers (in particular, their creation and
removal), more specifically we have the following as the start production,

model → create_trigger_stmt(; drop_trigger_stmt)?

We execute a generated test suite with 60781 test cases from which 1960 fail.
Our fault localization results are not particularly discriminatory in this case,
but a tie between two top ranked rules below already give a good idea of
the location of the deviation.

with_clause → WITH RECURSIVE ? cte_table_name AS (select_stmt) . . .
cte_table_name→ table_name((column_name (, column_name) ∗))?

3The full select_stmt-rule is as follows

select_stmt→ (WITH RECURSIVE common_table_expression (, common_table_expression)∗)?
select_or_values (compound_operator select_values)∗
(ORDER BY ordering_term (, ordering_term)∗)?
(LIMIT expr ((OFFSET | ,) expr)?)?

Stellenbosch University https://scholar.sun.ac.za

3.6. EVALUATION 71

The official documentation outlines syntax restrictions on INSERT , UPDATE ,
and DELETE statements within triggers: "Common table expression are not sup-
ported for statements inside of triggers." The trigger-related rules in the gram-
mar completely ignore this restriction and allow generic INSERT , UPDATE ,
and DELETE statements inside triggers. The faulty rules with_clause and
cte_table_name are directly derivable from these statements; the latter only
ever occurs in the former (i.e., with_clause-rule).

In the fix for this deviation, we simply duplicate rules from the three
statements and remove the call to with_clause.
Deviation #4. The above fix did not cater for all failures as we are left with
another 1152 failing tests after the modification. Here, all the test failures
have the same structure and the system throws similar syntax error mes-
sages. Below, we show one of the failing tests

create trigger tr1 delete on STAFF begin select 0 between 0 or 0 and 0;end

and its corresponding error message:

near ";": syntax error

From these failures we can, to some extent, conclude that the interaction
among operators BETWEEN , OR and AND (in that order) is problematic. Fault
localization also confirms this with the two expr-rules (shown below) flagged
as the most suspicious and both rules are applied in the derivation of all fail-
ing tests (i.e., both have ef and nf counts of 1152 and 0 respectively).

expr→ . . .
| expr OR expr
| expr NOT ? BETWEEN expr AND expr
| . . .

Taking a closer look, it seems the parser detects precedence issues between
the operators OR and AND which has a higher precedence than OR , due to a
parsing conflict between

expr→ expr AND expr

and
expr→ expr NOT ? BETWEEN expr AND expr

To circumvent this behaviour, wrapping parentheses around the expr- sym-
bol before AND in the second expr rule seemed to be the most plausible fix.
The modified rule is as follows:

expr→ expr NOT ? BETWEEN (expr) AND expr

Note that this is not a "proper" fix, but rather a "grammar hack" that does
not modify the language, but it resolves all remaining test failures and so
demonstrates that there are no further deviations

Stellenbosch University https://scholar.sun.ac.za

72 CHAPTER 3. RULE-LEVEL FAULT LOCALIZATION

In this experiment, we see that our approach enables us to identify four
deviations in larger SQLite grammar. The OBA principle also allows us to
find the first deviation in each stage with low average wasted effort, we
only needed to inspect one rule to find the first deviation, five rules before
the second deviation was found, two rules for the third deviation and finally
the cause of the fourth deviation was the top-ranked rule. The other models
did not result in any test failures.

RQ1d: The rule-level localization remains effective and scales to large pro-
duction quality grammars.

3.7 Conclusion
In this chapter, we have introduced our baseline fault localization method
that produces results at the level of individual grammar rules. We described
how popular parser generator tools such as JavaCC, ANTLR and CUP can
be extended to extract the grammar spectra that are necessary for fault lo-
calization. We have also described how we take advantage of test cases
generated from a faulty input grammar to extract synthetic spectra in cases
where the system under test cannot be extended or instrumented.

We have demonstrated the efficacy of our approach using a series of ex-
periments. In a larger experiment using fault seeded grammars, we showed
that our approach finds the faults with high precision. We then applied our
approach to a much more difficult task, that of finding real faults in student
grammars. We showed by using an iterative one-bug-at-time debugging
approach that our approach remains effective in this kind of setting. We
also used the same technique to identify where a larger, production qual-
ity SQLite grammar deviates from the black-box parser implemented by an
actual SQLite system.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Item-Level Fault Localization

Localization with rule spectra allows us to identify faulty rules in a gram-
mar; however, we still have to inspect the individual symbols on the right-
hand side of the rules to identify the actual fault location. This can involve
substantial effort since the rules can be long; for example, the BNF version
of the SQLite grammar [74] has more than twenty rules that each contain
six or more symbols, and the size of the longest rule is sixteen.

We therefore refine our method to localize errors more precisely, at the
level of the individual symbols in a rule. Our basic idea here is to use spectra
over items rather than over rules for the localization. This exploits the fact
that the designated position marks the boundary between the part of a rule
that has already been processed successfully and the part that still needs to
be processed; hence, we assume that the error is at the symbol following the
designated position.

We build on the extensions for rule spectra collection (see Sections 3.3
and 3.4) for parser generator tools JavaCC and CUP (which we call Sym-
JavaCC and SymCUP, respectively, to distinguish them from their rule-level
counterparts).

Furthermore, the development of item-level localization is a necessary
step for automatic repair (see Chapter 5). Item-level localization naturally
makes the search space easier to navigate than rule-level localization. This
follows a similar trend to automated program repair algorithms [48, 49,
108], which use fine-grained statement-level fault localization results, de-
spite several spectrum-based fault localization [32, 158] studies demonstrat-
ing that SFL works better at method-level spectra than statement-level spec-
tra.
Outline. We first illustrate the item-level localization method with a worked
example based on the same grammar GToy used in Chapter 3. We give formal
definitions of plain item spectra in Section 4.2.1. Section 4.2.2 defines shift
item spectra, the second approach to item spectra extraction for LR parsers.
We also describe the domain-specific tie breaking strategy that prefers the
right-most item over other items from the same rule in Section 4.2.3. We

73

Stellenbosch University https://scholar.sun.ac.za

74 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

then describe how item spectra can be extracted from JavaCC and CUP
parser generators in Section 4.3. We demonstrate the efficacy of the item-
level localization and compare it to rule-level localization in Section 4.4.

4.1 Worked Example

We illustrate the item-level localization with the same example as in Chap-
ter 3; specifically, we assume the same faulty grammar under test G′Toy

, with
the faults in the while- and if-rules, but since we are now trying to locate
the position of one or more offending symbols on the right-hand side of a
rule, the two items

stmt→ if expr then stmt • else stmt
stmt→ while expr do • block

now represent the faults.
Table 4.1 shows the detailed results for the item spectra collected accord-

ing to Definitions 4.2.1 and 4.2.2. Items are denoted by the non-terminal
name, the index of the corresponding alternative, as shown in Figure 3.1,
and the index of the designated position. Note that, due to the large spec-
trum size (81 elements, compared to 15 elements for rule spectra), entries
are shown only for the 25 items which have been executed in at least one of
the two failing test cases 6 and 11, and thus have non-zero suspiciousness
scores. For each metric, Table 4.1 shows two different rankings, the stan-
dard ranking and the resolved ranking, where ties are resolved using the
k-max tie breaking mechanism described in Section 4.2.3. In both cases, ties
are indicated by a preceding "=". Items corresponding to the fault locations
are shown in bold.1

Results. In Table 4.1, we see Tarantula assigns the highest suspiciousness
score to three items from the while-rule (including the item stmt:3:3 cor-
responding to the fault position), while the other three metrics rank these
behind items from the block- and expr-rules. As in the case of the rule-level
localization, the fault in the if -rule is harder to localize, and all four met-
rics rank it behind several (further) items from the block- and expr-rules, at
tied ranks 7 (Tarantula), 9 (Jaccard), and 11 (Ochiai and DStar), respectively.

If we inspect the items in rank order and resolve ties by picking rules ar-
bitrarily, we have on average to look at 8 positions (i.e., 9.8% of all positions)
in 6 rules before we find both faults using Tarantula, 10.5 positions (13.0%)
in 7 rules using Jaccard, and 12.5 positions (15.4%) in 7 rules using Ochiai

1Note also that we cannot directly compare fault localization results in this section with
those in Section 3.1 because the worked example in the previous chapter was manually con-
structed, while in this section, we use the two slightly different LR item spectra extraction
approaches introduced in Section 2.4 and implemented in SymCUP.

Stellenbosch University https://scholar.sun.ac.za

4.1. WORKED EXAMPLE 75

Ta
bl

e
4.

1:
It

em
sp

ec
tr

a,
su

sp
ic

io
us

ne
ss

sc
or

es
,

ra
nk

s,
an

d
re

so
lv

ed
ra

nk
s

fo
r

th
e

fa
ul

ty
gr

am
m

ar
ve

rs
io

n
G
′ To

y
an

d
ru

le
te

st
su

it
e.

It
em

s
ar

e
de

no
te

d
by

th
e

no
n-

te
rm

in
al

na
m

e,
th

e
in

de
x

of
th

e
co

rr
es

po
nd

in
g

al
te

rn
at

iv
e,

as
sh

ow
n

in
Fi

gu
re

3.
1,

an
d

th
e

in
de

x
of

th
e

de
si

gn
at

ed
po

si
ti

on
.

En
tr

ie
s

ar
e

on
ly

sh
ow

n
fo

r
it

em
s

w
it

h
no

n-
ze

ro
sc

or
es

.
Th

e
st

an
da

rd
ra

nk
in

g
is

sh
ow

n
on

th
e

le
ft

si
de

of
th

e
ra

nk
co

lu
m

n,
th

e
re

so
lv

ed
ra

nk
in

g
us

in
g

th
e

st
ra

te
gy

in
Se

ct
io

n
4.

2.
3

on
th

e
ri

gh
ts

id
e;

ti
es

ar
e

in
di

ca
te

d
by

a
pr

ec
ed

in
g

“=
”.

It
em

s
co

rr
es

po
nd

in
g

to
th

e
fa

ul
tl

oc
at

io
ns

ar
e

sh
ow

n
in

bo
ld

.

ite
m

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

ep
np

ef
nf

T
O

J
D

pr
og

:1
:0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

5
=2

1
0.

35
=1

8
0.

13
=2

1
0.

29
=1

7
pr

og
:1

:1
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
5

=2
1

0.
35

=1
8

0.
13

=2
1

0.
29

=1
7

pr
og

:1
:2

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
5

=2
1

0.
35

=1
8

0.
13

=2
1

0.
29

=1
7

pr
og

:1
:3

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
5

=2
1

14
0.

35
=1

8
=1

2
0.

13
=2

1
14

0.
29

=1
7

12
bl

oc
k:

1:
0

✓
✗

1
13

1
1

0.
86

12
7

0.
50

=1
1

=8
0.

33
=9

=7
0.

50
=1

1
=8

bl
oc

k:
1:

1
✗

✓
✗

1
13

2
0

0.
93

=4
=2

0.
82

=1
=1

0.
67

=1
=1

4
=1

=1
bl

oc
k:

2:
0

✓
✓

✓
✗

3
11

1
1

0.
70

17
11

0.
35

=1
8

=1
2

0.
20

17
11

0.
25

21
13

bl
oc

k:
2:

1
✗

✓
✓

✓
✗

3
11

2
0

0.
82

13
8

0.
63

8
6

0.
40

8
6

1.
33

5
5

bl
oc

k:
3:

0
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
9

5
1

1
0.

44
25

15
0.

22
25

15
0.

09
25

0.
10

24
15

bl
oc

k:
3:

1
✓

✓
✓

✓
✓

✗
✓

✓
✗

✓
9

5
2

0
0.

61
20

13
0.

43
16

10
0.

18
18

12
0.

44
15

10
bl

oc
k:

4:
0

✗
✓

✓
2

12
1

1
0.

78
14

9
0.

41
17

11
0.

25
16

10
0.

33
16

11
bl

oc
k:

4:
1

✗
✗

✓
✓

2
12

2
0

0.
88

=7
=5

0.
71

=4
=4

0.
50

=4
=4

2.
00

4
4

st
m

t:1
:0

✗
✓

✓
✓

✓
4

10
1

1
0.

64
=1

8
0.

32
=2

3
0.

17
=1

9
0.

20
=2

2
st

m
t:1

:1
✗

✓
✓

✓
✓

4
10

1
1

0.
64

=1
8

12
0.

32
=2

3
14

0.
17

=1
9

13
0.

20
=2

2
14

st
m

t:2
:1

✗
✓

1
13

1
1

0.
88

=7
0.

50
=1

1
0.

33
=9

0.
50

=1
1

st
m

t:2
:2

✗
✓

1
13

1
1

0.
88

=7
0.

50
=1

1
0.

33
=9

0.
50

=1
1

st
m

t:2
:3

✗
✓

1
13

1
1

0.
88

=7
0.

50
=1

1
0.

33
=9

0.
50

=1
1

st
m

t:2
:4

✗
✓

1
13

1
1

0.
88

=7
=5

0.
50

=1
1

=8
0.

33
=9

=7
0.

50
=1

1
=8

st
m

t:3
:1

✗
0

14
1

1
1.

00
=1

0.
71

=4
0.

50
=4

1.
00

=6
st

m
t:3

:2
✗

0
14

1
1

1.
00

=1
0.

71
=4

0.
50

=4
1.

00
=6

st
m

t:3
:3

✗
0

14
1

1
1.

00
=1

1
0.

71
=4

=4
0.

50
=4

=4
1.

00
=6

6
ex

pr
:1

:1
✓

✗
✗

1
13

2
0

0.
93

=4
=2

0.
82

=1
=1

0.
67

=1
=1

4.
00

=1
=1

ex
pr

:2
:1

✓
✗

✗
1

13
2

0
0.

93
=4

=2
0.

82
=1

=1
0.

67
=1

=1
4.

00
=1

=1
ex

pr
:4

:0
✓

✓
✓

✓
✗

✓
✗

5
9

2
0

0.
74

=1
5

0.
53

=9
0.

29
=1

4
0.

80
=9

ex
pr

:4
:1

✓
✓

✓
✓

✗
✓

✗
5

9
2

0
0.

74
=1

5
10

0.
53

=9
7

0.
29

=1
4

9
0.

80
=9

7

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

76 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

or DStar. Note that the number of rules involved does not change over the
different orders in which the tied positions are inspected here, although that
is not guaranteed in general.

Note that not all items from a rule are scored identically. In particular,
the item stmt:2:5 (i.e., stmt → if expr then stmt else • stmt) is scored zero
by all metrics; this is a strong indication that the fault is located to the left
of its designated position. However, note also that many items from the
same rule are indeed scored identically, and that the ties are therefore much
longer than for the rule-level localization.

4.2 Item Spectra

In this section, we give formal definitions of plain item spectra (already in
in Table 4.1) and shift item spectra (see the example in Table 4.2). The plain
item spectra definitions can be seen as extensions to Definitions 3.2.1 and
3.2.2. However, plain item spectra offer no formal guarantees that they can
be condensed into an equivalent rule spectra because items from the same
rule can have different spectral counts. For example, items from a rule with
optional elements may have different failing test executions. Our k-max tie
resolution strategy (see Section 4.2.3) takes this into account as well and
returns more than one item from the same rule if they have the same suspi-
ciousness score but different spectral counts.

4.2.1 Plain Item Spectra

In the first approach, we still define the spectra over maximal derivations; it
is based on a more or less straightforward adaptation of the corresponding
definitions of rule spectra. We can therefore informally (as we did for rule
spectra in Section 3.2) define an item spectrum for the word w in the test suite
as the set of positions within rules R• ⊆ P• that are processed successfully
when the word w is parsed. For accepted words, the item spectrum simply
includes all items from each applied rule.

Definition 4.2.1 (positive item spectrum). If S ⇒p1 α1 ⇒p2 α2 ⇒p3 · · · ⇒pn

αn = w, then R• =
⋃

i items(pi) is called a positive item spectrum for w.

For rejected words, the adaptation is slightly more complex than in the
positive case. More specifically, we include in the spectrum only items
from rules in derivation steps whose yield up to the designated position
occurs before the syntax error. As in the case of the rule spectra (see Defi-
nition 3.2.2), we must take the frontier rules into account; however, here we
only add the corresponding non-kernel items.

Stellenbosch University https://scholar.sun.ac.za

4.2. ITEM SPECTRA 77

derivation extracted items
∆ = prog
⇒prog:1 program id = block . {prog:1:0, prog:1:1, prog:1:2, prog:1:3}
⇒block:3 program id = { stmts }. {block:3:0, block:3:1}
⇒stmts:2 program id = { stmt }. {stmts:2:0}
⇒stmt:3 program id = { while expr do block }. {stmt:3:0, stmt:3:1}
⇒expr:4 program id = { while id do block }. {expr:4:0, expr:4:1, stmt:3:2, stmt:3:3,

block:1:0, block:2:0, block:3:0, block:4:0}

Figure 4.1: Example construction of negative item spectrum.

Definition 4.2.2 (negative item spectrum). Let w = uv /∈ L(G) with maxi-
mal viable k-prefix u, and S ⇒p1 α1 ⇒p2 α2 ⇒p3 · · · ⇒pn uXα be a maxi-
mally viable k-prefix bounded derivation for w with frontier X. Then

R• = {p• | αAβ⇒p αγβ ∈ ∆, p• = A→ µ • ν ∈ items(p),

∃x ∈ T∗ · αµx ⇒∗ u} ∪ closure({X → •γ | X → γ ∈ P})

is called a negative item spectrum for w.

Figure 4.1 illustrates the negative item spectrum construction for the
same maximal prefix-bounded derivation ∆ as in Section 3.2. It shows on
the left the individual derivation steps and on the right the corresponding
extracted items; the spectrum R• is the union of all these sets.

4.2.2 Shift Item Spectra

The plain item spectra we introduced in the previous section derive the
spectra from the individual derivation for each test case. In the second ap-
proach, we extract a single spectrum from all possible derivations that con-
sume prefixes of the maximal viable prefix.

Definition 4.2.3 (shift item spectrum). Let u be the maximal viable k-prefix
of w. Then

R• =
⋃

w′=uv∈L(G)
⋃

u′⪯iu, i≤k

{p• | ∆ = S i⇒∗w′ u
′ω, αAβ⇒p αγβ ∈ ∆, p• = A→ µ • ν ∈ items(p),

∃x ∈ T∗ · αµx ⇒∗ u′}

is called the shift item spectrum for w.

Definition 4.2.3 formulates this intuition. It considers all right comple-
tions v of the maximal viable prefix u, and then all maximal prefix-bounded
derivations of the prefixes of u; called u′ from these derivations, it extracts
the items of all applied rules. Note that this definition does not explicitly

Stellenbosch University https://scholar.sun.ac.za

78 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

consider the frontier rules (cf. Definition 4.2.2) because they are implied by
the different right completions. Note also that Definition 4.2.3 gives larger
and denser spectrum than Definition 4.2.1 if w ∈ L(G) because it consid-
ers all possible completions of valid prefixes, while the plain positive item
spectra only considers items for successful rule applications.

Worked Example. Table 4.2 shows the corresponding results for shift item
spectra (see Definition 4.2.3). It is easy to see that these are indeed both
larger (i.e., have more non-zero suspiciousness scores, at 38 compared to
25) and denser (i.e., items are associated with more test cases) than the plain
item spectra. However, this seeming loss of precision does not necessar-
ily translate into a worse localization performance, because the metrics are
based on the spectral difference between passing and failing tests.

In fact, in this case, the results improve noticeably. All four metrics now
assign the highest suspiciousness scores to three items from the while-rule
(i.e., stmt:3:1, stmt:3:2 and stmt:3:3). Tarantula and Jaccard both rank the
second fault (i.e., stmt:2:4) tied fourth, Ochiai ranks it tied fifth, while DStar
still struggles and ranks it tied twelfth. Overall, we have on average to
look at three positions 3 (i.e., 3.7% of all positions) in 2 rules before we find
both faults using Tarantula or Jaccard, 9.5 positions (11.7%) in 9 rules using
Ochiai, and 13 positions (16.0%) in 7 rules using DStar.

4.2.3 Specialized Tie Breaking Strategy

Since item-level localization induces larger and denser spectra than rule-
level localization, ties are more common and longer than in rule-level local-
ization. Tables 4.1 and 4.2 clearly illustrate this. Our challenge is to reduce
the sizes of the ties, and ideally to rank the faulty items uniquely at the top
of the tied group. Here, we can take advantage of contextual information
such as the type of test suites used or even the structure of the grammar
under test to break ties on the fly. In the worked example, we used a test
suite with positive tests only, so we can resolve ties between items from the
same rule in favour of the item with the largest designated position (and
in fact even drop items with subsumed designated positions entirely from
consideration). This improves the ranking and reduces the average wasted
effort, as the resolved ranks in Tables 4.1 and 4.2 show.

Formally, we propose the k-max tie breaking mechanism. The basic idea
of tie resolution using k-max is to resolve ties in favour of the item from a
grammar rule r with the larger designated position (i.e., further to the right
of the rule) over other items from the same rule r with smaller designated
positions. If there exists a tie from items of different grammar rules, k-max
picks from each rule the item with the highest position. The other items are

Stellenbosch University https://scholar.sun.ac.za

4.2. ITEM SPECTRA 79

Ta
bl

e
4.

2:
Sh

if
t i

te
m

sp
ec

tr
a,

su
sp

ic
io

us
ne

ss
sc

or
es

,r
an

ks
,a

nd
re

so
lv

ed
ra

nk
s

fo
r

th
e

fa
ul

ty
gr

am
m

ar
ve

rs
io

n
G
′ to

y
an

d
ru

le
te

st
su

it
e.

W
e

us
e

th
e

sa
m

e
la

yo
ut

as
in

Ta
bl

e
4.

1.

ite
m

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

ep
np

ef
nf

T
O

J
D

pr
og

:1
:0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

0.
35

=1
6

0.
13

=1
7

0.
29

=1
6

pr
og

:1
:1

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

0.
35

=1
6

0.
13

=1
7

0.
29

=1
6

pr
og

:1
:2

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

0.
35

=1
6

0.
13

=1
7

0.
29

=1
6

pr
og

:1
:3

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

bl
oc

k:
1:

0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
0.

35
=1

6
0.

13
=1

7
0.

29
=1

6
bl

oc
k:

1:
1

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

bl
oc

k:
2:

0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
0.

35
=1

6
0.

13
=1

7
0.

29
=1

6
bl

oc
k:

2:
1

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

bl
oc

k:
3:

0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
0.

35
=1

6
0.

13
=1

7
0.

29
=1

6
bl

oc
k:

3:
1

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

bl
oc

k:
4:

0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
0.

35
=1

6
0.

13
=1

7
0.

29
=1

6
bl

oc
k:

4:
1

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

de
cl

s:
1:

0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
=9

0.
35

=1
6

=8
0.

13
=1

7
=9

0.
29

=1
6

=8
de

cl
s:

2:
0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

de
cl

:1
:0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

st
m

ts
:1

:0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
=9

0.
35

=1
6

=8
0.

13
=1

7
=9

0.
29

=1
6

=8
st

m
ts

:2
:0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

st
m

t:1
:0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

st
m

t:1
:1

✗
✓

✓
✓

✓
4

10
1

1
0.

64
17

8
0.

32
37

21
0.

17
16

8
0.

20
37

21
st

m
t:2

:0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
=9

0.
35

=1
6

=8
0.

13
=1

7
=9

0.
29

=1
6

=8
st

m
t:2

:1
✗

✓
1

13
1

1
0.

88
=4

0.
50

=5
0.

33
=4

0.
50

=1
2

st
m

t:2
:2

✗
✓

1
13

1
1

0.
88

=4
0.

50
=5

0.
33

=4
0.

50
=1

2
st

m
t:2

:3
✗

✓
1

13
1

1
0.

88
=4

0.
50

=5
0.

33
=4

0.
50

=1
2

st
m

t:2
:4

✗
✓

1
13

1
1

0.
88

=4
2

0.
50

=5
=3

0.
33

=4
2

0.
50

=1
2

7
st

m
t:3

:0
✓

✓
✓

✓
✓

✗
✓

✓
✓

✓
✓

✓
✓

✗
✓

✓
14

0
2

0
0.

50
=1

8
=9

0.
35

=1
6

=8
0.

13
=1

7
=9

0.
29

=1
6

=8
st

m
t:3

:1
✗

0
14

1
1

1.
00

=1
0.

71
=1

0.
50

=1
1.

00
=1

st
m

t:3
:2

✗
0

14
1

1
1.

00
=1

0.
71

=1
0.

50
=1

1.
00

=1
st

m
t:3

:3
✗

0
14

1
1

1.
00

=1
1

0.
71

=1
1

0.
50

=1
1

1.
00

=1
1

st
m

t:4
:0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

st
m

t:5
:0

✓
✓

✓
✓

✓
✗

✓
✓

✓
✓

✓
✓

✓
✗

✓
✓

14
0

2
0

0.
50

=1
8

=9
0.

35
=1

6
=8

0.
13

=1
7

=9
0.

29
=1

6
=8

ex
pr

:1
:0

✓
✓

✓
✓

✓
✗

✓
✗

6
8

2
0

0.
70

=9
0.

50
=5

0.
25

=9
0.

67
=5

ex
pr

:1
:1

✓
✓

✓
✓

✓
✗

✓
✗

6
8

2
0

0.
70

=9
=4

0.
50

=5
=3

0.
25

=9
=4

0.
67

=5
=3

ex
pr

:2
:0

✓
✓

✓
✓

✓
✗

✓
✗

6
8

2
0

0.
70

=9
0.

50
=5

0.
25

=9
0.

67
=5

ex
pr

:2
:1

✓
✓

✓
✓

✓
✗

✓
✗

6
8

2
0

0.
70

=9
=4

0.
50

=5
=3

0.
25

=9
=4

0.
67

=5
=3

ex
pr

:3
:0

✓
✓

✓
✓

✓
✗

✓
✗

6
8

2
0

0.
70

=9
=4

0.
50

=5
=3

0.
25

=9
=4

0.
67

=5
=3

ex
pr

:4
:0

✓
✓

✓
✓

✓
✗

✓
✗

6
8

2
0

0.
70

=9
0.

50
=5

0.
25

=9
0.

67
=5

ex
pr

:4
:1

✓
✓

✓
✓

✗
✓

✗
5

9
2

0
0.

74
8

3
0.

53
4

2
0.

29
8

3
0.

80
4

2
ex

pr
:5

:0
✓

✓
✓

✓
✓

✗
✓

✗
6

8
2

0
0.

70
=9

=4
0.

50
=5

=3
0.

25
=9

=4
0.

67
=5

=3

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

80 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

dropped altogether.2 Generally, the k-max strategy creates two ranks from
a set of tied items from different rules, with items with larger designated
positions ranked higher.

Table 4.1 illustrates the benefits of the k-max tie breaking strategy for
plain item spectra. It resolves the respective ties over both faulty rules’ items
in favour of the actual fault locations; this allows Tarantula to pinpoint one
of the faults (i.e., identify it as the single top-ranked item). However, ties
over items from different rules remain unresolved (e.g., using Tarantula,
block:1:1, expr:1:1, and expr:2:1 remain tied). If we again inspect the items
in rank order and resolve the remaining ties arbitrarily, we now have to
look only at 5 positions (i.e., 6.1% of all positions) in 4 rules before we find
both faults using Tarantula, 7 positions (8.6%) in 5 rules using Jaccard, and
8 positions (9.8%) in 7 rules using Ochiai or DStar.

In the case of shift item spectra (see Table 4.2), the tie resolution strategy
is even more effective, and on average we have to look at only 2 positions
(2.5%) in 2 rules using Tarantula or Jaccard, 4.5 positions (5.6%) in 5 rules
using Ochiai, and 7 positions (8.6%) in 7 rules using DStar to identify the
faults.

4.3 Implementation

This section sketches extensions to JavaCC and CUP (which we call Sym-
JavCC and SymCUP respectively) in order to extract item spectra. As we
mentioned before, we do not use ANTLR in our evaluation here because our
attempts at an extension to item spectra were brittle and produced unreli-
able results; we leave the integration of precise spectra extraction alongside
ANTLR’s unbounded lookahead parsing algorithm for future work.

SymJavaCC. An extension to record item spectra is straightforward: we
only need to map the actions (i.e., matching tokens and recursive calls to
other parse functions) taken in the body of a parse function that implements
the rule back to their positional occurrence on the right hand-side of the cor-
responding rule. We only extract plain item spectra for SymJavaCC and do
not support shift item spectra, as they are geared towards LR-parsers.

SymCUP. Plain item spectra logging as per Definitions 4.2.1 and 4.2.2 in
SymCUP closely follows the description in Section 3.4; we do not need to
map items left on the stack to their corresponding rules, but simply extract
them "as they are." For every successful reduction, we log all items of the
corresponding reduced rule. The definition of shift item spectra is easy to
operationalize in LR-parsers since the parse stack represents a viable prefix,

2Note that dropping items may in principle also drop the actual faults. We can therefore
also use a k-max variant where the subsumed items are simply ranked directly below the
items identified by k-max.

Stellenbosch University https://scholar.sun.ac.za

4.4. EVALUATION 81

the spectra is composed from the (kernel and non-kernel) items in the states
that are pushed on the stack.

4.4 Evaluation

In this section, we present our experimental evaluation of the item-level
localization. We use this to answer our second research question, i.e., how
item-level localization compares to rule-level localization. We break this
into two sub-questions:

RQ2a: How effective are fault localization techniques based on item-level
spectra in identifying seeded single faults in grammars?

RQ2b: Does the use of item spectra improve the localization accuracy?

4.4.1 Experimental Setup

We first evaluate the efficacy of a fine-grained fault localization method that
uses items instead of rules as spectral elements. We adapt the same exper-
imental setup as in Section 3.6 using the mutated versions of SIMPL gram-
mars and the test suites and the respective number of killed mutants are the
same. The derived golden versions of JavaCC and CUP grammars have 242
and 258 items, respectively. Table 4.3 presents our experimental results in
three blocks. The VANILLA configuration uses the default ranking assigned
to items based on the suspiciousness scores computed by different metrics.
Tied items, i.e., items with the same suspiciousness scores, are assigned a
rank using the mid-rank tie breaking mechanism. The second block sum-
marizes results using a k-max tie breaking strategy introduced earlier. In
both cases, SymCUPshift shows results based on shift item spectra (see Def-
inition 4.2.3) while SymCUPplain shows results based on plain item spectra
as per Definitions 4.2.1 and 4.2.2.

The third block serves bench-marking purposes, to enable a fair com-
parison between item- and rule-level localization. This comparison is based
on the insight that when given a correctly predicted fault using rule-level
fault localization, we still need to look at all the symbols at the right-hand
side of a faulty rule (on the worse case) to find the offending symbol(s). On
average, we need to inspect half of the symbols in the rule to identify the
extract fault location. We can therefore extend the rule-level spectra to item-
level spectra. More specifically, given a rule r with assigned suspiciousness
score s, we replace r by a set of all possible items r• that can be derived
from r and assign s to each item of r. For example, consider the worked
example in Section 4.1: the rule stmt → sleep from the grammar G′Toy

has
a Tarantula score of 0.69 is replaced by its two items stmt → • sleep and

Stellenbosch University https://scholar.sun.ac.za

82 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

stmt→ sleep •. Both items get the Tarantula score of 0.69. We then re-rank
these reconstructed items using the mid-rank tie breaking strategy.

4.4.2 Effectiveness of Item-Level Localization (RQ2a)

We first focus on the "vanilla" strategy without specialized tie breaking, as
shown in the first block of Table 4.3. We can observe the following results.
First, as in the rule-level localization, Ochiai, Jaccard, and DStar outperform
Tarantula, here even for all test suites and parsing technologies: they give
lower mean and median values, and identify more faults. For the smaller
test suites (rule, cdrc, and instr), the differences between Ochiai, Jaccard, and
DStar are marginal, as for the large test suite, Jaccard slightly outperforms
Ochiai and DStar for JavaCC but underperforms for both versions of CUP.
Second, the mixed test suite large yields better results than the other three
test suites. Using large, we are able to uniquely localize the seeded fault in
6-32% of the cases, and in 24-65% and 32-70% of the cases the fault is local-
ized in the top three and top five of the ranked items respectively. Third, the
choice of the parsing technology does have an effect on fault localization.
With the exception of low #1 values, item-level localization appears to be
more effective in SymJavaCC than in both SymCUPshift and SymCUPplain

configurations. With SymJavaCC, the fault is typically located at a median
rank of 0.6-8.5%, hence, in more than half of the cases the fault is correctly
predicted within the top five items. Another interesting insight, and per-
haps hardly surprising, is that we cannot tell apart the effectiveness of fault
localization based on plain and shift item spectra in the LR case. In par-
ticular, SymCUPplain finds more faults within the top five items, but has
slightly worse mean ranks across the board than SymCUPshift.
Tie Breaking. The second block of Table 4.3 summarizes the fault localiza-
tion results, where we break ties using the k-max strategy that picks the item
with the highest position among tied items from the same rule. In general,
in most cases we see an increase in effectiveness – the median and mean
ranks are improved and #1, #3, and #5 numbers increase substantially; in
particular, we see an up to 30× increase in the number of seeded faults that
are pinpointed exactly (i.e., #1) when we are using small rule and cdrc test
suites, and a 2× increase for instr. The relative performance of the different
metrics, however, remains largely unaffected.

RQ2a: Our fault localization method based on item spectra remains effec-
tive in identifying single faults in grammars with seeded faults. The tie
breaking mechanism that prefers the item with the highest position over
other items from the same rule drastically improves the results.

Stellenbosch University https://scholar.sun.ac.za

4.4. EVALUATION 83

Ta
bl

e
4.

3:
D

et
ai

le
d

it
em

-l
ev

el
lo

ca
liz

at
io

n
re

su
lt

s
of

fa
ul

t
se

ed
in

g
ex

pe
ri

m
en

ts
ov

er
SI

M
PL

gr
am

m
ar

s.
x̃

an
d

x̄
de

no
te

th
e

m
ed

ia
n

an
d

m
ea

n
ra

nk
,r

es
pe

ct
iv

el
y,

of
th

e
se

ed
ed

fa
ul

t.
#1

de
no

te
s

th
e

nu
m

be
r

of
ca

se
s

w
he

re
th

e
m

et
ri

c
ra

nk
ed

th
e

se
ed

ed
fa

ul
ta

s
m

os
t

su
sp

ic
io

us
,#

3
an

d
#5

de
no

te
th

e
nu

m
be

r
of

ca
se

s
w

he
re

th
e

se
ed

ed
fa

ul
t

w
as

ra
nk

ed
in

th
e

to
p

3
an

d
to

p
5

m
os

t
su

sp
ic

io
us

it
em

s
re

sp
ec

ti
ve

ly
.

Ta
ra

nt
ul

a
O

ch
ia

i
Ja

cc
ar

d
D

St
ar

x̃
x̄

#1
#3

#5
x̃

x̄
#1

#3
#5

x̃
x̄

#1
#3

#5
x̃

x̄
#1

#3
#5

VANILLA

Sy
m

Ja
va

C
C

ru
le

2.
9

20
.2

12
0

99
31

13
54

8
1.

4
19

.5
20

2
13

63
4

16
44

4
1.

4
19

.5
20

3
13

63
4

16
44

4
1.

4
19

.6
20

2
13

56
6

16
37

0
cd

rc
2.

7
20

.5
17

7
10

37
5

13
82

9
1.

4
19

.9
25

8
13

98
8

17
04

5
1.

4
19

.9
25

9
13

98
9

17
04

5
1.

4
19

.9
24

9
13

87
0

16
92

0
la

rg
e

1.
7

8.
3

52
11

14
73

1
17

98
8

0.
8

7.
5

10
14

0
20

75
8

22
18

6
0.

8
7.

0
98

97
20

89
6

22
72

9
0.

6
8.

5
10

18
3

21
11

5
22

14
2

in
st

r
8.

5
26

.7
80

0
56

78
79

71
1.

2
23

.6
46

01
16

56
2

18
49

1
1.

2
23

.7
45

79
16

29
1

18
22

6
1.

2
23

.7
45

88
16

54
3

18
55

3
Sy

m
C

U
P s

h
i
f
t

ru
le

3.
9

14
.3

34
09

73
52

87
75

3.
3

13
.2

40
79

85
80

10
01

9
3.

3
13

.2
40

79
85

79
10

01
7

3.
3

13
.2

40
79

85
80

10
01

9
cd

rc
3.

9
14

.0
37

93
78

96
97

96
2.

9
12

.8
44

91
91

75
11

38
1

3.
1

12
.9

44
91

91
73

10
95

4
2.

9
12

.8
44

91
91

75
11

38
1

la
rg

e
5.

3
13

.5
17

16
63

68
86

96
2.

5
10

.1
60

39
96

01
12

52
7

3.
9

12
.2

59
52

89
98

11
36

3
1.

9
10

.6
66

61
10

50
1

13
46

4
in

st
r

11
.5

24
.0

14
42

32
66

52
48

4.
7

16
.7

43
40

82
00

10
23

8
4.

7
18

.5
43

38
79

71
10

16
9

3.
9

16
.2

44
02

83
98

10
41

1
Sy

m
C

U
P p

l
a
i
n

ru
le

2.
1

20
.0

31
26

88
69

11
56

3
1.

6
19

.3
34

69
10

83
5

13
12

7
1.

6
19

.3
34

69
10

83
5

13
12

6
1.

6
19

.3
34

69
10

83
5

13
12

7
cd

rc
2.

1
20

.1
39

54
99

71
12

61
5

1.
4

19
.5

45
11

12
07

1
14

48
7

1.
4

19
.5

45
11

12
07

1
14

48
6

1.
4

19
.5

45
11

12
06

9
14

48
6

la
rg

e
4.

3
13

.8
20

82
76

67
10

20
9

1.
9

12
.5

88
42

12
29

8
13

60
3

2.
3

12
.8

80
86

10
67

4
12

81
7

1.
6

12
.9

10
15

1
12

62
7

13
57

1
in

st
r

12
.2

29
.8

11
73

40
21

53
52

3.
3

26
.4

40
29

92
46

11
31

8
3.

5
26

.4
40

32
91

62
11

00
8

3.
1

26
.4

40
56

95
30

11
55

2

k-MAX

Sy
m

Ja
va

C
C

ru
le

1.
9

19
.6

59
11

12
07

1
15

54
1

0.
8

19
.1

69
26

16
83

6
17

44
9

0.
8

19
.1

69
27

16
83

6
17

44
8

0.
8

19
.2

69
26

16
76

8
17

38
7

cd
rc

1.
7

19
.9

62
38

12
67

5
15

96
7

0.
8

19
.5

75
65

17
25

2
17

87
3

0.
8

19
.5

75
66

17
25

3
17

87
3

0.
8

19
.5

75
56

17
15

4
17

75
7

la
rg

e
1.

7
8.

2
76

76
15

11
6

18
20

4
0.

6
7.

5
13

86
3

20
88

8
22

14
8

0.
6

7.
0

13
56

6
20

96
4

22
66

2
0.

6
8.

5
14

02
6

21
11

7
22

10
6

in
st

r
7.

6
26

.3
28

51
70

08
89

49
0.

8
23

.3
97

04
17

63
6

18
49

2
0.

8
23

.4
96

73
17

26
7

18
12

9
0.

8
23

.5
97

02
17

57
1

18
39

5
Sy

m
C

U
P s

h
i
f
t

ru
le

2.
1

13
.4

50
54

83
46

11
49

0
1.

4
12

.7
60

03
93

78
13

32
9

1.
4

12
.7

60
03

93
77

13
32

7
1.

4
12

.6
60

03
93

78
13

32
9

cd
rc

1.
8

13
.1

55
06

92
20

12
79

6
1.

4
12

.2
64

92
10

32
1

14
90

7
1.

4
12

.3
64

92
10

31
9

14
48

0
1.

4
12

.3
64

92
10

32
1

14
90

7
la

rg
e

5.
3

13
.5

18
00

64
24

87
00

2.
5

10
.1

62
96

97
30

12
54

8
3.

9
12

.1
61

94
90

46
11

38
7

1.
9

10
.6

69
32

10
50

8
13

47
6

in
st

r
10

.9
23

.7
20

05
49

90
68

41
4.

1
16

.5
56

33
96

62
10

84
3

4.
1

18
.3

56
29

95
48

10
77

6
3.

7
16

.0
56

99
98

58
11

01
5

Sy
m

C
U

P p
l
a
i
n

ru
le

1.
0

19
.1

54
47

13
25

0
14

02
2

0.
8

18
.8

59
30

14
42

2
14

98
2

0.
8

18
.9

59
30

14
42

2
14

98
1

0.
8

18
.9

59
30

14
42

2
14

98
2

cd
rc

0.
8

19
.2

79
99

14
30

8
15

28
2

0.
8

19
.0

87
99

15
47

9
16

02
5

0.
8

19
.0

87
99

15
47

7
16

02
2

0.
8

19
.1

87
99

15
47

6
16

02
1

la
rg

e
4.

1
13

.5
21

68
79

24
10

35
5

1.
6

12
.2

91
19

12
44

3
13

77
2

2.
3

12
.7

83
41

10
88

7
12

87
5

1.
6

12
.8

10
60

1
12

67
8

13
64

3
in

st
r

12
.0

29
.4

19
35

54
38

75
18

3.
1

26
.1

57
34

10
84

1
12

18
4

3.
1

26
.1

57
32

10
76

0
11

87
3

2.
7

26
.2

57
63

11
12

8
12

41
7

RULE

Ja
va

C
C

ru
le

3.
7

17
.9

6
64

65
10

17
2

2.
1

16
.5

14
85

97
14

44
9

2.
1

16
.5

14
85

97
14

44
9

2.
1

16
.5

14
85

82
14

43
7

cd
rc

3.
1

16
.4

16
82

60
11

77
6

1.
9

15
.2

23
10

28
6

15
52

5
1.

9
15

.2
23

10
28

6
15

52
4

2.
1

15
.5

19
97

00
14

92
9

la
rg

e
3.

1
12

.1
19

98
50

13
21

7
2.

1
8.

9
23

11
41

2
16

52
1

2.
1

8.
4

24
11

52
7

16
47

0
2.

1
9.

7
22

11
27

9
16

45
5

in
st

r
17

.4
32

.0
0

17
88

42
50

4.
5

27
.3

4
54

81
11

55
4

4.
5

26
.6

4
53

68
11

06
6

4.
5

27
.2

4
55

30
11

59
7

C
U

P
ru

le
4.

5
24

.9
0

48
82

67
77

3.
5

24
.3

0
61

94
89

82
3.

5
24

.3
0

61
94

89
82

3.
5

24
.3

0
61

94
89

82
cd

rc
4.

3
25

.2
0

54
58

74
62

3.
3

24
.6

0
67

77
95

14
3.

3
24

.6
0

67
77

95
14

3.
3

24
.6

0
67

75
95

11
la

rg
e

3.
1

11
.5

6
62

89
10

29
1

3.
7

15
.0

3
69

32
11

05
9

3.
5

14
.9

4
64

09
10

61
5

3.
7

17
.2

3
69

54
11

05
2

in
st

r
15

.2
36

.1
2

19
97

31
86

7.
6

33
.4

3
54

03
78

84
7.

8
33

.9
3

50
17

75
02

6.
4

33
.3

3
56

48
83

73

Stellenbosch University https://scholar.sun.ac.zaStellenbosch University https://scholar.sun.ac.za

84 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(a) Results for rule test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(b) Results for cdrc test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(c) Results for large test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(d) Results for instr test suite.

Figure 4.2: Comparison results of item- and rule-level localization over fault-
seeded SIMPL grammars using SymJavaCC. Top left sub-plots show the compar-
ison on rule test suite, top right cdrc, bottom left large and bottom right instr. For
each test suite, plots are shown for each of the four metrics Tarantula, Ochiai, Jac-
card, and DStar. Each diagram shows two boxplots for the item-level and the cor-
responding rule-level results, where all items in the rule are ranked equally. The
boxplots have the same structure as described in Section 3.6.1; outliers outside the
95th percentile are denoted by individual grey diamonds (which can overlap in the
plot).

Stellenbosch University https://scholar.sun.ac.za

4.4. EVALUATION 85

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(a) Results for rule test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(b) Results for cdrc test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(c) Results for large test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(d) Results for instr test suite.

Figure 4.3: Comparison results of item- and rule-level localization over fault seeded
SIMPL grammars under SymCUPshift. Boxplots layout as in Figure 4.2.

Stellenbosch University https://scholar.sun.ac.za

86 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(a) Results for rule test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(b) Results for cdrc test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(c) Results for large test suite.

Item Rule
Tarantula

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
Ochiai

0

20

40

60

80

100

Item Rule
Jaccard

0

20

40

60

80

100

Pr
ed

ict
ed

 ra
nk

 (%
)

Item Rule
DStar

0

20

40

60

80

100

(d) Results for instr test suite.

Figure 4.4: Comparison results of item- and rule-level localization over fault seeded
SIMPL grammars under SymCUPplain. Boxplots layout as in Figure 4.2.

Stellenbosch University https://scholar.sun.ac.za

4.5. THREATS TO VALIDITY 87

4.4.3 Item- vs Rule-level Localization (RQ2b)

Here we address RQ2b, Figures 4.2 to 4.4 summarize the comparison of
item- and rule-level fault localization as a series of paired box plots. Each
pair contains ranks from item spectra and ranks from rule spectra computed
using each ranking metric over each test suite on each of the two parsing
mechanisms. Similarly, here, the upper and lower ends of the box in each
box plot represent the 75th and 25th percentile, respectively. The median
is also shown as a line that cuts across the box. We derive the comparison
from the second block (k-MAX) and the third block (RULE) from Table 4.3.

While results differ with the applied parsing mechanism and the un-
derlying test suite, it is easily observable that, the k-max strategy performs
better than rule-level localization. This is made evident by better median
(0.6-10.9% vs 2.1-17.2%) and mean ranks. Note that according to our intu-
ition of replacing each rule in the rule spectra by its set of items, we cannot
make comparisons based on the #1/#3/#5 values.

RQ2b: Item-level localization with the specialized tie breaking mechanism
outperforms the simplistic extension of rule-level localization where all
positions within a rule are assigned the same score.

4.5 Threats to Validity
Our experiments in this chapter are subject to similar threats to validity as
those in Section 3.6.1, because we use the same experimental setup, and
in particular, the same base grammars. However, in these experiments we
introduce more heuristic elements, especially in our handling of ties, the
k-max tie breaking strategy is modelled on positive tests and while we got
better results for the larger mixed test suite which contain negative tests, k-
max may not generalize to other grammars, parsing technologies and other
ranking metrics.

Another threat to validity is that all our insights are based on fault seed-
ing experiments and we may make different observations on grammars
with real and multiple faults. However, in the next chapter, we use item-
level localization to identify faults in a fully automatic repair framework
and see good results there.

4.6 Conclusion
This chapter described our item-level localization approach. We formally
defined three types of item spectra and showed how the parser generator
tools JavaCC and CUP can further be extended to capture these spectra dur-
ing parsing. We also proposed a simple yet effective tie breaking mechanism

Stellenbosch University https://scholar.sun.ac.za

88 CHAPTER 4. ITEM-LEVEL FAULT LOCALIZATION

that prefers items with the highest positions within ties of items from the
same rules.

We showed that fault localization based on item spectra remains effec-
tive and that our tie breaking mechanism drastically improves the results.
We further demonstrated that we can effectively achieve better precision
using specialized item spectra than simply extending rule spectra.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Automatic Grammar Repair

In this chapter, we describe the automation of the manual find-and-fix cycle
illustrated in Section 1.1 and used in the experimental evaluation of fault
localization described in Section 3.6.3 and Section 3.6.4. We first formalize
our repair framework in Section 5.1; in particular, we then describe two al-
gorithms, the passive repair algorithm, in Section 5.1.7 and the active repair
algorithm in Section 5.1.8.

Sections 5.2, 5.3 and 5.4 describe grammar transformations that we use
to patch faulty input grammars. We use an example Gtest in Figure 5.1 to
illustrate each grammar transformation by injecting some faults, some of
which are modelled on real faults introduced by students.

Section 5.5 describes our realization of the approach by the highly con-
figurable gfixr prototype tool that takes as input a test suite specification that
we repair against, an optional oracle that that answers additional member-
ship queries, and the input grammar G.

We then demonstrate the efficacy of our approach through a series of
experiments in Section 5.6. Sections 5.6.2, 5.6.3 and 5.6.4 summarize our re-
sults of repairing 33 grammars written by students. We consider both repair
configurations (passive and active repair) of our approach in the evaluation
and compare both methods like-for-like in Section 5.6.4. We conclude the
chapter with the discussion of the limitations and challenges that our ap-
proach faces in Section 5.7.

5.1 Repair Framework

In this section, we formalize the individual elements of our repair approach.
The overall structure of the repair algorithm that follows the find-and-fix
cycle mentioned in the introduction is shown in Algorithms 2 and 3; more
implementation details are given in Section 5.5.

89

Stellenbosch University https://scholar.sun.ac.za

90 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

5.1.1 The Repair Problem

We assume that we have a test suite TSL = (TS+, TS−) for an unknown
target language L that is comprised of positive tests TS+ ⊆ L and negative
tests TS− with TS− ∩ L = ∅, and an initial CFG G that fails at least one test
in TSL (i.e., TS+ ̸⊆ L(G) or TS− ∩ L(G) ̸= ∅). The repair problem is then to
construct from TSL and G a "similar" CFG G′ that accepts all positive tests
(i.e., TS+ ⊆ L(G′)) and rejects all negative tests (i.e., TS− ∩ L(G′) = ∅) and
so approximates L better than G. We require in the following that the test
suite TSL is viable for G, i.e.,

(i) it detects at least one fault in G, i.e., (TS− ∩ L(G)) ∪ (TS+\L(G)) ̸= ∅;

(ii) it is constructive, i.e., TS− ⊆ L(G).

The first condition ensures that the test suite is strong enough so we can
localize and fix, while the second ensures that negative tests are not arbi-
trary token sequences but are wrongly accepted by the (current) grammar
candidate and thus contain enough structure that can be exploited for re-
pair attempts. In the remainder of the paper, we assume a fixed test suite
TSL = (TS+, TS−) that is viable for the initial CFG G.

However, the problem is underspecified and a repair can "overgeneral-
ize", i.e., TS+ ⊆ L(G′) ̸⊆ L. We can therefore evaluate the quality of our
repairs only through manual inspection or based on performance over an
additional validation suite.

5.1.2 Patches, Repairs, and Fixes

A grammar patch p is simply a transformation from one CFG G = (N, T, P, S)
into another CFG G′ = (N′, T′, P′, S′); we denote this by G ⇝p G′. A patch
G ⇝p G′ is viable with respect to a viable test suite TSL if G′ performs no
worse over TSL than G, i.e.,

(i) L(G) ∩ TS+ ⊆ L(G′) ∩ TS+;

(ii) L(G) ∩ TS− ⊇ L(G′) ∩ TS−;

(iii) ∀w ∈ TSL · prefixG(w) ⪯ prefixG′(w)

Hence, the patched grammar accepts more of the positive and fewer of the
negative tests, and accepts longer input prefixes of the tests that rejects. A
viable patch is an improvement if one of the set inclusions or prefix relations
is strict, and a partial repair if one of the set inclusions is strict, i.e., G′ fails
fewer tests than G. It is a full repair or a fix for G if G′ passes all tests, i.e.,
TS+ ⊆ L(G′) and TS− ∩ L(G′) = ∅.

Stellenbosch University https://scholar.sun.ac.za

5.1. REPAIR FRAMEWORK 91

5.1.3 Spectrum-Based Fault Localization for Repair

We have experimented with different variants of item spectra (see the pre-
vious chapter), but for the repair we can consider localization as a black
box, and model a spectrum as the union of two different relations ∼✓,∼✗⊆
P• × TSL between items and tests that encode test execution and test out-
come. We then define pass(p•) = {w ∈ TSL | p• ∼✓ w} and fail(p•) =
{w ∈ TSL | p• ∼✗ w} as the sets of passing and failing tests executing p
up to the designated position, respectively. We can then define the usual
counts Npass = |

⋃
p• pass(p•)|, ep(p•) = |pass(p•)|, and np(p•) = Npass −

ep(p•), and correspondingly, Nfail = |
⋃

p fail(p•)|, ef (p•) = |fail(p•)|, and
nf (p•) = Nfail − ef (p•).

We model the suspiciousness scores with an abstract scoring function
score : P• → R+ ∪ {0}, which must satisfy score(p•) > 0 ⇒ fail(p•) ̸= ∅.
The usual formulas (see Section 2.4) can be used based on the definitions of
the counts given above.

5.1.4 Induced Patches

In the following sections, we define a series of transformations that compute
a patch item q• from a suspicious item p•. However, we cannot simply patch
the grammar by replacing p with q in P: if p was used in at least one passing
positive test case (i.e., p• ∼✓ w for a w ∈ TS+) then an in-place update can
make G′ fail a test case that G was passing, and so render the patch unviable.
We therefore need to control update by spectral counts.

Hence, given G = (N, T, P, S) the patch G ⇝(p,q) G′ is induced by the
pair (p•, q•) if G′ = (N, T, P′, S), and

P′ =

{
P ∪ {q} \ {p} if ep+(p•) = 0
P ∪ {q} if ep+(p•) > 0

By abuse of notation, we also write p⇝ q (resp. G⇝q G′) to mean G⇝(p,q)
G′ if G and G′ (resp. p) are clear from the context or are immaterial.

5.1.5 Good Tokens, Bad Tokens

The second essential ingredient to make our approach scalable is that we
limit the repairs that are attempted at each repair site through explicit con-
ditions that capture when a patch is likely to yield a repair. These condi-
tions are formulated over the grammar structure (using predicates such as
first and follow), pass and fail counts, and lexical context around the failure
locations, aggregated over the individual false negatives.

Recall that w = uabv /∈ L(G) and ua ⪯k w maximal mean that the
(first) syntax error occurs between a and b. We call a, which is the last token

Stellenbosch University https://scholar.sun.ac.za

92 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

successfully consumed just before the parser reports the syntax error, the
good token for w and b the bad token. A pair (a, b)w of good and bad tokens
for w can be seen as a poisoned pair in G [130] and our repair attempts to
break this property. We define the sets of good tokens T+

p and bad tokens
T−p for an item p as the sets of good and bad tokens from the failing tests in
which p is executed, i.e., (T+

p , T−p) =
⋃{(a, b)w | p ∼✗ w, w ∈ TS−} (where

the union is taken componentwise). Examples of these will be shown in
subsequent sections.

5.1.6 Patch Validation against Sample Bigrams

We can prevent some over generalization by providing negative tests, which
can be seen as pre-emptive answers to some membership queries. In the
active repair setting we can update this set automatically during the repair
process, but in the passive setting we cannot. We can, however, extract more
information from the positive tests and use this to check whether a patch can
be valid or not. More specifically, given a test suite TSL = (TS+, TS−), we
collect all sample bigrams Γ2(TSL) = {(a, b) | w = xaby ∈ TS+} that occur
in the positive tests, and check that the terminals that can occur directly
to the left and right of the repair site can also occur as sample bigrams; if
not, we reject the patch. Note that is of course a heuristic, it relies on the fact
that TS+ provides enough examples to approximate the follow-relation well
enough through the bigrams. Note also that we can over-approximate the
bigrams by simply assuming all pairs of tokens are possible (i.e., Γ2(TSL) =
T × T); in this case, all patches are trivially validated, and we have to rely
on the fitness function (see below) to rule out "bad" candidates.

5.1.7 Passive Repair Algorithm

Algorithm 2 shows the passive repair loop that implements the find-and-fix
cycle described earlier. It dequeues the top-ranked faulty grammar variant
G′ from a central priority queue Q that manages all repair candidates, runs
localize to determine possible repair sites (i.e., suspicious items), and then
calls transform to try and apply the patches described in more detail in
the following sections. For each unseen new candidate C resulting from
applying a patch, it uses run_tests to generate an executable parser and
run it over the test suite TS. If the candidate C fails no tests, it is returned as
a full repair. Otherwise, if C improves on its parent G′, it is enqueued.

The priority queue Q contains pending grammar candidates derived
from improving patches. It is keyed by a four-tuple (P, F, Pre, R), where
P and F are the number of passing and failing tests, respectively, Pre is the
total length of the successfully parsed prefixes, and R is the localization rank
of the patched item from which the candidate was derived. We use lexical

Stellenbosch University https://scholar.sun.ac.za

5.1. REPAIR FRAMEWORK 93

Algorithm 2: The passive repair algorithm
input : A faulty grammar G = ⟨N, T, P, S⟩
input : A test suite TS
output: A fully repaired variant G′ or ⊥

1 Q← ∅
2 ⟨P, F, Pre⟩ ← run_tests(G, TS)
3 Q.enqueue(G, ⟨P, F, Pre, ∞⟩)
4 Seen← {G}
5 repeat
6 ⟨G′, ⟨PG′ , FG′ , PreG′ , _⟩⟩ ← Q.dequeue()
7 Ranks← localize(G′, TS)
8 Cands← transform(G′, Ranks)
9 for C ∈ Cands \ Seen do

10 Seen.add(G′)
11 ⟨PC, FC, PreC⟩ ← run_tests(C, TS)
12 if FC = ∅ then
13 return C

14 if improves(⟨PG′ , FG′ , PreG′⟩, ⟨PC, FC, PreC⟩) then
15 Q.enqueue(C, ⟨PC, FC, PreC, Ranks[C]⟩)

16 until Q.empty()
17 return ⊥

order to determine the priority. The algorithm also maintains a set of Seen
candidate grammars to prevent non-termination.

The localizemodule determines potential repair sites in the faulty gram-
mar variant, and provides further spectral information such as basic counts
(ef , ep, nf , np) and the aggregated sets of good T+

p and bad tokens T−p for
each item p to the transform module.

5.1.8 Active Repair Algorithm

In the passive repair setting, we repair against an initial test suite as target
specification, but keep this constant throughout the process; in particular,
we also use this to localize (i.e., find repair sites) and validate new candi-
dates as they are constructed.

If we have access to a membership oracle (e.g., a black-box parser) for
the target language L, we can improve the localization and validation steps
by generating new tests from grammar candidates as they are constructed,
relying on the oracle to determine the true status of these unseen tests. Since

Stellenbosch University https://scholar.sun.ac.za

94 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

Algorithm 3: The active repair algorithm
input : A faulty grammar G = ⟨N, T, P, S⟩
input : A test suite TSL
input : A boolean valued oracle O
output: A fully repaired variant G′ or ⊥

1 Q← ∅
2 TS← TSL ∪ generate_tests(G)
3 Q.enqueue(G, _)
4 Seen← {G}
5 repeat
6 ⟨G′, _⟩ ← Q.dequeue()
7 Ω← run_oracle(TS)
8 Ranks← localize(G′, Ω, TS)
9 Cands← transform(G′, Ranks)

10 for C ∈ Cands \ Seen do
11 Seen.add(G′)
12 TS← TS ∪ generate_tests(C)

13 ⟨PG′ , FG′ , PreG′⟩ ← run_tests(G′, TS)
14 for C ∈ Cands \ Seen do
15 ⟨PC, FC, PreC⟩ ← run_tests(C, TS)
16 if FC = ∅ then
17 return C

18 if improves(⟨PG′ , FG′ , PreG′⟩, ⟨PC, FC, PreC⟩) then
19 Q.enqueue(C, ⟨PC, FC, PreC, Ranks[C]⟩)

20 until Q.empty()
21 return ⊥

this is similar to Angluin’s active learning [11]1, we call this the active repair
setting.

Algorithm 3 presents a high-level description of this active repair ap-
proach. We extend and build on the passive repair algorithm shown in
Algorithm 2. There are several differences in the flow of the search that
we highlight. First, Algorithm 3 takes as input an extra variable, a boolean
valued oracle O.

Second, in active repair we generate tests TSC from each candidate C that
we add to the growing pool of test cases TS, which already includes the user
provided target test suite TSL and the test suite TSG generated from the in-
put grammar G. We call the union of TSL and TSG test suites an initial test
suite, and denote it by TSinit. Each candidate C is tested for fitness over the

1Note that Angluin also requires an equivalence oracle to decide termination of the
learning process; we still use the initial test suite for this purpose.

Stellenbosch University https://scholar.sun.ac.za

5.2. SYMBOL EDITING PATCHES 95

growing pool TS and enqueued if it improves over its parent. Note that TS
is global and monotonously growing. Candidates therefore get tested for
fitness against a test suite that includes tests not derived from themselves,
thus improving the fitness selection. The algorithm returns as a fix a can-
didate that produces test outcomes that are consistent with the language
accepted by the oracle O, i.e., passes all tests in TS and thus TSinit.

5.2 Symbol Editing Patches
Our first group of patches is modelled on the basic string editing opera-
tions (i.e., deletion, insertion, substitution, and transposition), applied to
the symbols on the right-hand sides of the rules.

5.2.1 Symbol Deletions

We first consider symbol deletion patches. These are useful to fix bugs
where the grammar fails to properly handle optional elements. Consider
for example a test suite TS′test ⊇ TStest (see Appendix A for a complete test
suite) that also includes the three (positive) tests:

program a define a() begin relax end begin relax end

program a
define a() -> int begin relax end
begin relax end

program a begin a() end

These tests fail under Gtest because neither paramlist nor arglist are nullable,
and their addition to TStest can be seen as a "repair request" to change Gtest
to allow empty formal parameter and argument lists.

The localization identifies amongst others the following three items as
suspicious:

fdecl → define id (• paramlist) body
fdecl → define id (• paramlist) -> type id body
name→ . . . | id (• arglist)

In these all cases, the sets of good and bad tokens are T+ = { (} and T− =
{) }, respectively. We use the former to check that the designated position
in the item is actually correlated to the lexical error contexts and, specifically,
that the item’s left set contains only good tokens. This is trivially the case
here, since the left sets of all three items are { (} as well. We use the latter
similar to the way a parser’s panic mode error recovery uses synchronization
tokens: starting at the designated position, we delete symbols from the rule
until this synchronizes the rule with the bad tokens, i.e., until the right set

Stellenbosch University https://scholar.sun.ac.za

96 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

prog → program id body
| program id fdecllist body

fdecllist → fdecl | fdecl fdecllist
fdecl → define id (paramlist) body

| define id (paramlist) -> type id body
paramlist→ param | param , paramlist
param → type id | type array id
type → boolean | int
body → begin stmts end

| begin vdecllist stmts end
vdecllist → vdecl | vdecl vdecllist
vdecl → type idlist ; | type array idlist ;
idlist → id | id , idlist
stmts → relax | stmtlist
stmtlist → stmt | stmt ; stmtlist
stmt → assign | cond | input | leave | output | loop
assign → name | name ::= expr | name ::= array simple
cond → if expr then stmts end

| if expr then stmts elsiflist end
| if expr then stmts else stmts end
| if expr then stmts elsiflist else stmts end

elsiflist → elsif expr then stmts
| elsif expr then stmts elsiflist

input → readname
output → write elemlist
elemlist → elem | elem . elemlist
elem → string | expr
loop → while expr do stmts end
expr → simple | simple relop simple
relop → = | >= | > | <= | < | /=
simple → - termlist | termlist
termlist → term | term addop termlist
addop → - | or | +
term → factorlist
factorlist → factor | factor mulop factorlist
mulop → and | / | * | rem
factor → name | num | (expr) | not factor | true | false
name → id | id [simple] | id (arglist)
arglist → expr | expr , arglist

Figure 5.1: BNF baseline grammar Gtest suitable for CUP.

Stellenbosch University https://scholar.sun.ac.za

5.2. SYMBOL EDITING PATCHES 97

of the item after the deletion contains all bad tokens. This is again trivially
the case here, since in all three cases the corresponding right sets after the
deletion of the first symbol (paramlist resp. arglist) are {) } as well.

However, we need to be careful that we are not adding rules with ex-
posed nullable symbols, which can use an ε-derivation to accept the new
tests but which allow unintended derivations and thus overgeneralize. Con-
sider the variant G′test:

name → . . . | id (• expr namelist)
namelist→ namelist , expr | ε

Deleting the expr-symbol at the localized position in the name-rule allows
us to synchronize on) because namelist is nullable but this also allows for
example a derivation name ⇒G′ id (namelist) ⇒∗G′ id (, id) . This over-
generalization could be prevented by additional explicit counter-examples,
but we instead rely on a careful formalization of the synchronization patch
and corresponding patch validation.

Definition 5.2.1 (synchronization). Let p = A → α • βω be an item in P•

with left(p) ⊆ T+
p .

(a) If ω = Xγ with X non-nullable and T−p ⊆ first(X), let d(p, β) = A→
α •ω be the result of deleting β at the designated position. Then p⇝ d(p, β)
is a synchronization patch.

(b) If ω is nullable and T−p ⊆ follow(A), let d(p, βω) = A → α• be the
result of deleting βω at the designated position. Then p ⇝ d(p, βω) is a
panic mode synchronization patch.

We validate synchronization patches by checking that the test suite con-
tains all bigrams that are newly possible by the deletion of β. More specifi-
cally, we compare the left- and right-sets in G′ around the repair site against
the bigrams.

Definition 5.2.2 (synchronization validation). Let p = A → α • βω be an
item in P•. The synchronization patch G ⇝d(p,β) G′ is validated over TSL if
leftG′(d(p, β))× rightG′(d(p, β)) ⊆ Γ2(TSL).

In the running example, the deletions of paramlist and arglist both only
expose the single "repair bigram" ((,)), which occurs in Γ2(TS′test).
Example Repairs. gfixr patches the baseline grammar Gtest against TS′test as
expected, by adding the three rules

fdecl → define id () body
fdecl → define id () -> type id body
name→ . . . | id ()

The rules are created from the corresponding baseline rules by the deletion
of a single symbol at the identified fault locations shown above, and are

Stellenbosch University https://scholar.sun.ac.za

98 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

added to the grammar, rather than replacing the baseline rules, because the
latter are used in other passing tests. gfixr finds this fix with three patches
in roughly two minutes, generating 26 candidate grammars.2 Note that the
initially top-ranked item param → • type arrayid induces a rule param → ε
through a panic mode synchronization, but this fails the patch validation
and gets ruled out because Γ2(TS′test) does not contain the induced bigram
((, ,).

In the variant G′test with a nullable namelist-rule, the synchronization
deletes both the expr and the subsequent nullable namelist symbols in the
name-rule (and similarly for the fdecl-rule). gfixr finds the corresponding fix
with three patches in less than 90 seconds, generating 18 candidate gram-
mars.

As an example for the deletion of longer sequence of symbols consider
a faulty version of Gtest (see Fig. 5.1) where the first fdecl-rule is missing
(e.g., due to a missing ?-operator around the sequence -> type id at the
EBNF level). Here, gfixr introduces a copy of fdecl-rule without the segment
-> type id. It finds this single patch fix in roughly 30 seconds, generating
only five candidate grammars.

5.2.2 Symbol Insertions

Symbol insertion patches are useful to fix bugs where grammar develop-
ers have missed one or more symbols in a rule, or even an entire rule (e.g.,
the second fdecl-rule in Gtest). Note that we only insert a single symbol and
rely on repeated repairs to grow larger patches symbol by symbol, in or-
der to limit the number of different repairs that we need to consider at
each suspicious location. In contrast to symbol deletion patches, where
we effectively check that the bad tokens are a subset of the right-set (i.e.,
T−p ⊂ right(A → α • ω)) and the patch thus covers all failing tests associ-
ated with the item, we check here only for a non-empty intersection (i.e.,
T−p ∩ right(A → α • ω) ̸= ∅), i.e., we only require the patch to "eat up" at
least one bad token, to allow a patch to (partially) repair a subset of failing
tests at a time.

Definition 5.2.3 (symbol insertion). Let p = A → α • ω be an item in P•

with left(p) ⊆ T+
p , and i(p, X) = A → α • Xω be the result of inserting

X ∈ V at the designated position of p. If T−p ∩ right(i(p, X)) ̸= ∅, then
p⇝ i(p, X) is an insertion patch.

We validate insertion patches by checking the same condition as for syn-
chronization patches, with the designated position before the inserted sym-

2All runtimes given in Section 5.2 to Section 5.4 were measured as wall-clock time on an
otherwise idle standard 3.20 GHz desktop with 6 cores and 16 GB RAM. The evaluation in
Section 5.6 uses a different computational setup, and times are not necessarily comparable.

Stellenbosch University https://scholar.sun.ac.za

5.2. SYMBOL EDITING PATCHES 99

bol; we do not check the symmetric condition for the designated position
after the inserted symbol, because the insertion could be part of a larger
patch that is found through repeated insertions.

Definition 5.2.4 (insertion validation). Let p = A → α • ω be an item in
P• and X ∈ V. The insertion patch G ⇝i(p,X) G′ is validated over TSL if
leftG′(i(p, X))× rightG′(i(p, X)) ⊆ Γ2(TSL).

Example Repair. If we remove the rule

fdecl→ define id () -> type id body

from Gtest, gfixr re-introduces it with three patches, each inserting an individ-
ual symbol to form the segment -> type id. It takes 53 seconds, generating
13 candidate grammars.

5.2.3 Symbol Substitutions

Substitution patches fix bugs where grammar developers have used a wrong
symbol, as shown in the example from the introduction (see Section 1.1).
Such bugs are particularly difficult to detect when the grammar is either
too permissive (e.g., name → id [expr]) or too restrictive, in a way that
is only uncovered by structurally complex tests (e.g., paramlist → param |
param , param). A substitution patch replaces the symbol at the designated
position by another one that "eats up" at least one of the bad tokens.

Definition 5.2.5 (symbol substitution). Let p = A → α • Xω be an item in
P• with left(p) ⊆ T+

p , Y ∈ V, and s(p, Y) = A → α • Yω be the result of
replacing X at the designated position by Y. If T−p ∩ right(A → α • Yω) ̸=
∅, then p⇝ s(p, Y) is a substitution patch.

In contrast to insertion patches, substitution patch validation checks both
sides of the repair site, to ensure the substituted symbol fits tightly.

Definition 5.2.6 (substitution validation). Let p = A → α • Xω be an item
in P• and Y ∈ V. The substitution patch G ⇝s(p,Y) G′ is validated over TSL
if

(i) leftG′(s(p, Y))× rightG′(s(p, Y)) ⊆ Γ2(TSL), and

(ii) leftG′(A→ αY •ω)× rightG′(A→ αY •ω) ⊆ Γ2(TSL).

Substitution patch validation has two specific effects. First, it leads to a
preference for deletions over substitutions with nullable symbols, which in
turn leads to better grammars. Second, it leads to a preference of insertions
over substitutions; in particular, a "compound" patch A → α • Xω ⇝ A →

Stellenbosch University https://scholar.sun.ac.za

100 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

αYZ • ω is realized via A → αY • Xω and not via A → αY • ω, which
reduces the search space.
Example Repair. Substitutions, deletions, and insertions can interact to cre-
ate larger repairs. Consider for example a student implementation of the
language of Gtest where the rule: factor → (expr) is missing, so that it re-
jects bracketed expressions. The following five tests fail from TStest

program a begin write 0 * (0) end
program a begin write not(0) end
program a begin a(0, (0)) end
program a begin write(0) end
program a begin a((0)) end

The top-ranked item name → •id [simple] fails the precondition on the
good tokens for each potential patch, and gfixr tries to patch the factor-rules
which are ranked next. There are seven possible insertions and substitu-
tions, which all pass the validations, but the substitution patch factor →
• not factor ⇝ factor → • (factor improves most, as it accepts longer pre-
fixes. The resulting grammar is therefore picked in the next iteration, where
an insertion patch inserts the missing)-token, completing the fix. gfixr gen-
erated 61 candidates in roughly 3 minutes and 30 seconds. Note that this
already constitutes a fix, because it makes all tests pass, even though it does
not fit the intent (which would have also replaced the factor at the right-hand
side of the rule by expr).

5.2.4 Symbol Transpositions

The final symbol edit patch we consider is symbol transposition, which
swaps the two symbols following the designated position. While this is
not a very common bug pattern, it does occur in connection with list rules.
For example, consider the following variant of Gtest that has the following
bug in the idlist-rule

idlist → id idlisttail
idlisttail→• id , idlisttail | ε

that leads to a pair of adjacent id-tokens in the beginning and a trailing
comma at the end of an idlist. gfixr generates a patch that swaps the id and
, tokens in idlisttail, which in turn fixes the rule. It found this in a single
iteration, in about 1 minute 20 seconds, generating 23 candidates.

Definition 5.2.7 (symbol transposition). Let p = A → α • XYω be an item
in P• with left(p) ⊆ T+

p , and t(p) = A→ α •YXω be the result of swapping
the symbols X and Y at the designated position. If T−p ∩ right(t(p)) ̸= ∅,
then p⇝ t(p) is a transposition patch.

Stellenbosch University https://scholar.sun.ac.za

5.3. LISTIFICATION PATCHES 101

Transposition patch validation follows the same lines as substitution
patch validation, and checks the corresponding conditions on the three items
A→ α •YXω, A→ αY • Xω, and A→ αYX •ω.

Definition 5.2.8 (transposition validation). Let p = A → α • XYω be an
item in P•. The transposition patch p⇝ t(p) is validated over TSL if

(i) leftG′(t(p))× rightG′(t(p)) ⊆ Γ2(TSL), and

(ii) leftG′(A→ αY • Xω)× rightG′(A→ αY • Xω) ⊆ Γ2(TSL).

(iii) leftG′(A→ αYX •ω)× rightG′(A→ αYX •ω) ⊆ Γ2(TSL).

5.3 Listification Patches

Our second group of patches is geared towards more structural changes in
the grammar. In this section, we introduce two "listification" patches, right
recursion introduction and its generalization, list synthesis.

5.3.1 Right Recursion Introduction

Right recursion introduction patches are useful to handle bugs where the
grammar fails to properly handle repetitions. Consider for example a vari-
ant of Gtest submitted by a student where the the body-, vdecllist-, and vdecl-
rules in Gtest are replaced by the following rules:

body → begin vdecls stmts end

vdecls→ type id idlist ; • | ε

This allows only at most one variable declaration (despite the intent of the
name vdecls) and thus fails the test

program a begin bool a; • bool a; relax end

with the •-symbol also indicating the error location observed in the input.
The obvious fix is to restore the intent behind the vdecls-rule by making it
right-recursive.

Definition 5.3.1 (right recursion introduction). Let G = (N, T, P, S), G′ =
(N, T, P′, S) be CFGs, and p = A → α• ∈ P• a reduction item with
first(A) ⊆ T−.

(a) If A is nullable and A→ ε ∈ P, let P′ = P \ {p} ∪ {A→ αA}.
(b) If A is nullable and A→ ε /∈ P, let P′ = P \ {p} ∪ {A→ αA, A→ ε}.
(c) If A is not nullable, let P′ = P ∪ {A→ αA}.

Then G⇝L1(p) G′ is a right recursion introduction patch.

Stellenbosch University https://scholar.sun.ac.za

102 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

Right recursion introduction checks if A is nullable to decide whether to
allow empty lists or not; this is a heuristic, but further patches can refine the
repair, if required. It also checks for an existing ε-rule before adding it, to
prevent introducing conflicts.

Note that this listification patch can be seen as a special case of symbol
insertion that always uses an in-place grammar update. This can lead to
an overgeneralization, because all occurrences of A are listified at the same
time. We can prevent this by checking that the bigrams introduced by the
recursion actually occur in the test suite.

Definition 5.3.2 (listification validation). Let p = A → α• be an item in
P•. The listification patch G ⇝L(p) G′ is validated over TSL if leftG′(A →
α • A)× rightG′(A→ α • A) ⊆ Γ2(TSL).

In the example, gfixr finds the single patch fix vdecls→ typeid idlist ; vdecls
in roughly 30 seconds, generating only five candidate grammars.

5.3.2 List Synthesis

Right recursion introduction does not generalize to all repetitions in a gram-
mar. We identify two scenarios where it falls short and cannot be applied
as a patch. First, when a repetitive structure is used in a local context and
occurs in the middle of the definition of some A-production. Assume, for
example, the body-rule in Gtest is replaced by the following rules:

body→ begin stmts end
| begin type id ; • stmts end

This allows at most one variable declaration captured via the sequence type
id ; in the middle of the second alternative of the body-rule. This variant of
Gtest thus fails one of the tests,

program a begin bool a; • bool a; relax end

with the •-symbol also indicating the error location observed in the input.
Right recursion introduction cannot fix this because the repetition needs
to be spliced into the middle of the second body-rule, but there is no non-
terminal symbol that "summarizes" the elements to be repeated.

Second, right recursion introduction cannot handle delimiter-separated
repetitions. These list structures are omnipresent in most languages: think
of a comma-separated list of function parameters in popular programming
languages or a semicolon-separated list of SQL queries and many more oth-
ers. The list synthesis patch handles such cases.

We can further extend the machinery and extract the next token at the
right-hand side of the bad token before parsing stops due to a syntax error.
We call this token the right token. We use T∗p for a set of right tokens for an

Stellenbosch University https://scholar.sun.ac.za

5.3. LISTIFICATION PATCHES 103

item p executed in failing tests. We only use these tokens for patches that
synthesize list structures.

Definition 5.3.3 (list synthesis). Let G = (N, T, P, S) be a CFG and p = A→
αγ • ω an item in P•. If G′ = (N′, T, P

′
, S) is a CFG with N′ = N ∪ {B},

B /∈ N, and P
′
= P \ p ∪ {A → αγBω, B → βγB, B → ε} then G ⇝L2(p) G′

is a list synthesis patch, provided:
(a) β is nullable, T+

p ⊆ left(A → αγ • ω) and T−p ∩ right(A → αγ •
Bω) ̸= ∅.

(b) β is not nullable, T+
p ⊆ left(A → αγ • ω), T−p ∩ right(B → •βγB) ̸=

∅, and T∗p ∩ right(B→ β • γB) ̸= ∅.

The first scenario that we sketched out in the motivation for the need for
list synthesis patch, is handled by case (a) in the above definition, where the
separator symbol β is empty. Case (b) synthesizes β-separated list elements.
In practice, however, this transformation needed extra control flags that re-
strict its applicability. For example, in the example repair in Section 5.2.2
where the fix required multiple iterations, list synthesis gets better fitness in
the first iteration because it consumes more of the input than the partial in-
sertion patch that ultimately leads to the full fix. We, therefore, only accept
list synthesis patches if their application leads to fewer test failures than the
parent faulty variant.

Example repair. If we modify the name-rule for function call expressions
from Gtest

name→ . . . | id (expr •) | . . .

the following four tests fail

program a begin a((a), (a), 0) end
program a begin a(a, a, a) end
program a begin a(0, 0, 0) end
program a begin a(0, 0, 0) end

and the sets of good, bad, and right tokens are T+ = {) , a , 0 }, T− = { , }
and T∗ = { (, a , 0 } respectively.

gfixr reconstructs it correctly to the following rules.

name → . . . | id (expr expr_list) | . . .
expr_list→ , expr expr_list | ε

Note that the actual patch contains a randomly generated identifier for the
new non-terminal introduction. We use expr_list here for clarity. gfixr gener-
ated 25 candidate grammars and took 1 minute and 40 seconds to find the
patch.

Stellenbosch University https://scholar.sun.ac.za

104 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

5.4 Language Tightening Transformations

The example grammar in Figure 5.1 contains three different quirks which
allow procedure calls without argument lists, call expressions as lvalues,
and indexing expressions as statements. It does not distinguish properly
between simple identifiers, array indexing expressions, and function calls,
and instead subsumes all three under the non-terminal name:

assign→ name | name ::= expr | name ::= array simple
input → readname
factor → name | . . .
name → id | id [simple] | id (expr exprlist)

This means that the compiler’s semantic analysis must filter out idiosyn-
cratic constructions, such as

• simple identifiers as statements (i.e., function calls without argument
lists), e.g.,

program a begin a end

• array indexing expressions as statements, e.g.,

program a begin a[0] end

• function calls as lval in assignments, array initializations, and input
statements, e.g.,

program a begin a(0) ::= 0 end
program a begin a(0) ::= array 0 end
program a begin read a(0) end

• array indexing expressions as lval in array initializations (which would
require nested arrays), e.g.,

program a begin a[0] ::= array 0 end

These idiosyncrasies should (and can) already be filtered out by syntactic
analysis. The common cause of these and similar issues is that the grammar
is too permissive, i.e., L ⊆ L(G). A repair of this permissiveness requires a
language restriction or tightening, which can be specified by negative tests.
We focus here on false positives or counter-examples because arbitrary nega-
tive tests do not provide enough structure to guide the repair. In the follow-
ing, we look at specific tightening patches, rule deletion and non-terminal
splitting or "downcasting", de-listification patches, and a patch that tightens
list structures by pushing down some list elements. Note that we apply the
language tightening patches only at reduction items.

Stellenbosch University https://scholar.sun.ac.za

5.4. LANGUAGE TIGHTENING TRANSFORMATIONS 105

5.4.1 Rule Deletion

Clearly, deleting a rule tightens the language; the only non-trivial aspect is
to ensure that this actually is a viable patch, i.e., that the deletion does not
inadvertently block valid derivations in G of positive tests.

We can ensure this if the rule is only ever used in reductions in false pos-
itives (i.e., can be seen as an error production), and if the patch is applied as
an approximation from above (i.e., all positive tests are already passing with-
out it):

Definition 5.4.1 (rule deletion). Let G = (N, T, P, S) with TS+ ⊆ L(G),
p = A → α• ∈ P• a reduction item, and ef (p) > 0. If G = (N, T, P′, S) is a
CFG with P′ = P \ {p} then G⇝D(p) G′ is a rule deletion patch.

The gfixr implementation uses a relaxed condition that simply requires
that the rule has not been used in parsing any true positive (i.e., ep(p) = 0
and fail(p) ⊆ TS−), although this could in principle delete it when it would
still be used for a true positive after another patch.

5.4.2 Non-terminal Splitting

In practice, the conditions of the rule deletion patch are rarely met, because
the rule is used both in failing and passing tests, and the error only mani-
fests in certain rule combinations. Consider for example the rule input →
readname, which only fails in combination with name→ id (arglist) .

We therefore need an enabling patch that moves rules into the right con-
texts (similar in spirit to CDRC coverage [82]) and so separates out passing
and failing rule applications.

Definition 5.4.2 (non-terminal splitting). Let G = (N, T, P, S), p = A →
αBω• ∈ P• a reduction item with PB = {B → βi}i>1, ep(p) > 0, ef (p) > 0,
and fail(p) ⊆ TS−. If G′ = (N, T, P′, S) is a CFG with P′ = P \ {p} ∪ {A →
αβiω} then G⇝S(p,B) G′ is a non-terminal splitting patch for B.

Note that splitting a non-terminal only in one of the rules A → αiBωi
can introduce parsing conflicts. In the gfixr-implementation, we split across
all rules A→ αiBωi where the split non-terminal occurs.

Example Repair. We repaired the idiosyncrasies in Gtest with a step2 [150]
test suite with 159 positive tests and seven negative tests, including the test

program a begin a ::= 0; a end

Stellenbosch University https://scholar.sun.ac.za

106 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

in addition to the six tests shown above. gfixr finds the following fix in 7
minutes and 36 seconds in 9 generations, after testing 125 candidates:

stmt → id (arglist)
| id ::= expr | id [expr] ::= expr | id ::= array simple
| cond | . . .

input→ read id | read id [expr]

The key patches are several splits of name in different contexts, followed by
the deletion of the split rule variants that are only used in parsing negative
tests. Note that splits at irrelevant contexts (e.g., in factor) are ruled out
because they do not improve the grammar.

This result is arguably not too far away from a manual repair (that may
introduce a proper lvalues non-terminal to factor out the commonalities in
assign and read) but the quality of gfixr’s repairs obviously depends only on
the completeness of the test suite and not on the intent. In this case, the first
six tests only indicate errors in the first stmt of a stmtlist, and the seventh
test case was crucial to confine the splits to assign and input, and to prevent
them from recursively "bubbling up" through stmt to stmtlist.

5.4.3 Token Splitting

The need for token splitting occurs when multiple alternative lexemes that
belong to different contexts are subsumed under the same structured to-
ken, (e.g., a grammar with an ADDOP-token that captures the lexemes " + "
and " - ", but without a proper (unary) MINUS-token). Due to the consider-
able freedom the CFG formalism allows grammar developers, such faults
are prevalent and are difficult to spot, especially, under assumptions that a
stable lexer-parser interaction is made available, and the focus is purely on
the context-free syntax. For example, the two Pascal grammars that were
proved non-equivalent by Madhavan et al. [99] have different terminal sets,
one of the grammars defines specific terminal symbols for the basic types
such as BOOLEAN while the other subsumes them under identifiers. We
extend and build on the non-terminal splitting transformation introduced
above to implement token splitting.

Definition 5.4.3 (token splitting). Let G = (N, T, P, S), p = A→ αaω• ∈ P•

a reduction item and fail(p) ⊆ TS−. Let RE = {T ∪ {SL}, Σ, PL ∪ {SL →
t | t ∈ T}, SL} be a lexical grammar that captures structured tokens, a → bi
with bi ∈ (Σ ∪ T)∗. If G′ = (N, T′, P′, S) is a CFG with T′ = T \ {a} and
P′ = P \ {p} ∪ {A → αbiω} then G ⇝T(p,a) G′ is the token splitting patch for
the structured token a.

Note that gfixr’s current implementation of the token splitting transfor-
mation ignores some of the common lexer policies, such as longest match

Stellenbosch University https://scholar.sun.ac.za

5.4. LANGUAGE TIGHTENING TRANSFORMATIONS 107

and rule ordering. Their integration is not straightforward, and we leave its
investigation for future work.
Example repair. Consider, for example, a student’s implementation show-
ing the rules for simple, termlist, and a structured token ADDOP

simple → ADDOP termlist • | termlist
termlist→ term | termlist ADDOP term
ADDOP → - | + | or

The lexer returns the same token ADDOP for lexemes + , - and or . The parser
fails six negative tests, including the following,

program a begin a := array or 0 end
program a begin write or 0 or 0 end
program a begin write 0 = or 0 end

because it wrongly accepts or as a prefix-operator.
gfixr finds the fix the fault in two iterations in under ten minutes, generat-

ing 225 candidate grammars. In the first iteration, gfixr splits all occurrences
of the ADDOP-token in the simple- and termlist-rules into three lexemes. This
gives us

simple → - termlist | + termlist | or termlist | termlist
termlist→ term | termlist - term | termlist + term | termlist or term

In the second iteration, a rule deletion patch is applied to rules simple →
+ termlist and simple→ or termlist, which leaves us with full fix:

simple → - termlist | termlist
termlist→ term | termlist - term | termlist + term | termlist or term

5.4.4 Recursion Elimination

Recursion elimination is another language tightening transformation like
rule deletion and splitting transformations. Unlike other tightening trans-
formations, it specifically restricts overly permissive repetitions in a gram-
mar. It can be seen as an inverse of the listification transformations intro-
duced in Section 5.3. Consider for example a variant of Gtest submitted by a
student where the expr-rules in Gtest are replaced by the following rules:

expr→ expr relop simple | simple

The target language restricts relational operators (relop) to only two simple
terms as arguments, but the first alternative expr-rule over-generalizes this
and allows any number of simple terms and therefore accepts the following
tests (among others):

Stellenbosch University https://scholar.sun.ac.za

108 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

program a begin if 0 == 0 == 0 then relax end end
program a begin while a == a >= a do relax end end

Below, we introduce two versions of the recursion elimination patches
that target immediate left (resp. right) recursion. These patches introduce
a fresh non-terminal that is defined over the non-recursive alternatives and
replaces the recursive occurrence.

Definition 5.4.4 (immediate left recursion elimination). Let G = (N, T, P, S),
p = A → Aω• ∈ P• a reduction item with other alternatives for A, PA =
{A → αi}i>1, ep(p) > 0, ef (p) > 0, and fail(p) ⊆ TS−. If G′ = (N′, T, P′, S)
is a CFG with N′ = N ∪ {B}, B /∈ N, and P′ = P \ {p} ∪ {A → Bω, A →
B, B→ αi} then G⇝El(p,A) G′ is the immediate left recursion elimination patch
for A.

Definition 5.4.5 (immediate right recursion elimination). Let G = (N, T, P, S),
p = A → αA• ∈ P• a reduction item with other alternatives for A, PA =
{A → βi}i>1, ep(p) > 0, ef (p) > 0, and fail(p) ⊆ TS−. If G′ = (N′, T, P′, S)
is a CFG with N′ = N ∪ {B}, B /∈ N, and P′ = P \ {p} ∪ {A → αB, A →
B, B → βi} then G ⇝Er(p,A) G′ is the immediate right recursion elimination
patch for A.

We can easily extend the definitions for general immediate recursion of
the form A→ αAβ, but we leave its support and evaluation for future work.
Example repair. gfixr prevents the over-generalization in the expr-rule by
transforming the rules as follows:

expr→ rest relop simple | rest
rest → simple

It generates 86 candidate grammars in 5 minutes in a single iteration.

5.4.5 Push-down List Elements

Another widespread occurrence of over-approximation common to most
student’s implementations is the permissive definition of list elements. Con-
sider, for example, a faulty implementation of a function call with the fol-
lowing rules.

name → . . . | id (expr_list) | . . .
expr_list→ expr_list , expr | expr | ε

The above rules capture all syntactically valid function calls but also gener-
alizes to ill-formed tests, the grammar allows function call arguments to be
preceded by a comma, e.g.,

program a begin a ::= a (, 0) end
program a begin a ::= a (, 0, 0) end

Stellenbosch University https://scholar.sun.ac.za

5.5. IMPLEMENTATION 109

It is perhaps worth noting that, although straightforward, the above counter-
examples may not be generated due to some restrictions (e.g., deletion and
insertion of nullable symbols) by the rule mutation algorithm, depending
on how the golden grammar that describes the target language is formu-
lated. This shows that these type of faults can be difficult to spot.

Definition 5.4.6 and Definition 5.4.7 formulate the left and right recursive
variations, respectively.

Definition 5.4.6 (push-down list elements). Let G = (N, T, P, S), p = A →
Aγυ• ∈ P• a reduction item with other alternatives for A, PA = {A →
υ, A→ ωi}i>1, ep(p) > 0, ef (p) > 0, and fail(p) ⊆ TS−. If G′ = (N′, T, P′, S)
is a CFG with N′ = N ∪ {B}, B /∈ N, and P′ = P \ {p} ∪ {A → B, A →
ωi, B → Bγυ, B → υ} then G⇝Pl(p,A) G′ is the push-down list elements patch
for A.

Definition 5.4.7 (push-down list elements). Let G = (N, T, P, S), p = A →
αβA• ∈ P• a reduction item with other alternatives for A, PA = {A →
α, A→ γi}i>1, ep(p) > 0, ef (p) > 0, and fail(p) ⊆ TS−. If G′ = (N′, T, P′, S)
is a CFG with N′ = N ∪ {B}, B /∈ N, and P′ = P \ {p} ∪ {A → B, A →
γi, B → αβB, B → α} then G ⇝Pr(p,A) G′ is the push-down list elements patch
for A.

The combination of non-terminal splitting and rule deletion patches can
also be used here to achieve the required result. However, these patches
may require extra iterations if there are multiple occurrences of non-terminal
A.
Example repairs. gfixr finds the fix for the above over-generalization in
about 4 minutes and generated 106 candidate patches.

expr_list→ exprs | ε
exprs → exprs , expr | expr

Here, we also use self-explanatory name for the new non-terminal that
is introduced. The actual patch contains a randomized name.

5.5 Implementation

We have prototyped both passive and active repair approaches, as described
in the previous sections in the gfixr tool.
System Architecture. gfixr implements the repair loop variations shown in
Algorithms 2 and 3. It uses Python and Maven to orchestrate the repair
(e.g., parameter handling or parser generation) and Java to implement the
grammar analyses (such as computing the left- and right-functions) and
transformations for the patches. The overall system size is about 5.5kLoC.

Stellenbosch University https://scholar.sun.ac.za

110 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

gfixr currently only repairs CUP grammars, but the system can be adapted
to work with other parser generators. This requires modifications in the
localize (where a modified parser is required to extract spectral informa-
tion), transform (where the grammar meta-model needs to be adapted), and
run_tests (where the build system needs to be adapted) modules.

The localize module currently uses the Ochiai-metric that worked well
enough in our experiments, but this can be re-configured easily.

The input oracle O used in the active case can be in the form of a black-
parser that can confirm membership. In our experiments, we use parsers
from ANTLR for ground-truth grammars describing the respective target
languages.

Patch Selection. Currently, gfixr uses a simplistic strategy to select the sub-
set and order of the suspicious items identified by localize, where repairs
are attempted: it simply selects all items with a non-zero score and pro-
cesses them in descending score order. It tries all transformations described
in the Section 5.2, Section 5.3, and Section 5.4 at each repair site to produce
candidate patches. The order in which the applicable patches are tried is
implementation-dependent and mostly fixed; however, users can control
which symbols are used for insertion and substitution patches (see below
for details). Patch selection is therefore integrated into the transform mod-
ule.

In the passive case, gfixr evaluates the performance of each candidate
patch over the original input test suite; in the active case, it uses an ever-
growing test suite that is updated after each iteration with the test cases
generated from the iteration’s new candidates. Better performing patches
are pushed towards the front of the priority queue and stand better chances
of further transformations until a fix is found.

Patch Validation. In addition to the specific patch validation via bigrams,
each candidate patch goes through a generic patch validation to determine
whether they improve over their parent, following the definition of im-
provements in Section 5.1: (i) the candidate reduces the number of failing
test cases, or (ii) when the number of failing test cases remains unchanged,
the candidate must consume at least one longer (and no shorter) prefix than
the parent. gfixr discards candidates that do not improve over their parent.

The bigram-based validation requires sample bigrams that can be ex-
tracted from the test suite or a different set of sample tests, using a separate
small script.
Configuration. gfixr takes as input the initial grammar, an optional oracle
which switches to the active repair mode, and the test suite used to spec-
ify the repair. The option -bigrams_file specifies the separately created
file containing the bigrams used for patch validation. -oracle provides the
black-box parser that implements the ground-truth grammar describing the
unknown target language.

Stellenbosch University https://scholar.sun.ac.za

5.6. EVALUATION 111

The repair algorithm can be configured through a number of command
line arguments. -tight restricts the symbol substitutions and insertions
patches and allows only the most specific possible symbol in a maximal
chain A⇒∗ B to be inserted and substituted. -weak_left and -strong_right
change the relation between good resp. bad tokens and left- resp. right-sets
required to enable a transformation to non-empty intersection resp. contain-
ment (see for example Definition 5.2.3). Both settings enable more transfor-
mations but may lead to overgeneralization.

We also introduce more control flags. -strict is an option that pre-
vents greedy transformations like list synthesis from over-matching and
thus over-generalizing beyond the target language. Some languages can
be inherently ambiguous by design and not parsable using the LALR algo-
rithms; we therefore introduce the option -non_lr to discard all test cases
generated from a grammar variant G′, and not in L(G′) because of some
conflict in the grammar.

Further options control CUP’s parsing algorithm. -rr sets the number
of reduce/reduce conflicts that are allowed in the candidate; the default
is 0. gfixr discards grammars with more conflicts. -compact_red enables
CUP’s action table compaction, which often allows it to execute reductions
pending on the stack when a syntax error is encountered. Both options can
have an impact on the localization and should be used only if gfixr cannot
repair the grammar.

5.6 Evaluation
In this section, we answer our third main research question, i.e., can we use
fault localization to drive automatic repair of faults in grammars? We refine
this question into three specific sub-questions:

RQ3a How effective is our proposed passive repair approach in fixing faults
in grammars?

RQ3b How effective is our proposed active repair approach in fixing faults
in grammars?

RQ3c Does the active repair approach induce better fixes than the passive
repair approach?

5.6.1 Experimental Setup

Evaluation Subjects. In our experiments, we used CUP grammars writ-
ten by students to evaluate gfixr’s efficacy. These grammars describe dif-
ferent but structurally similar medium-size Pascal-style languages used in
different graduate compiler engineering courses. Many of the submissions

Stellenbosch University https://scholar.sun.ac.za

112 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

have lexical issues and could not handle the interactions between parser
and lexer properly. Since the current version of gfixr does not support new
token creation we discarded submissions with known lexical issues (e.g.,
wrong regular expressions for strings). The first ten grammars (#1 to #10,
see Table 5.1) were taken from different small cohorts; they were randomly
selected from all submissions that failed at least one test. The remainder of
the grammars (#11 to #33) are from the most recent cohort, where the class
size was significantly larger, with a total enrolment of 28. In one assign-
ment, the students were tasked with writing CUP parsers for two languages
G and H. The grammar for the language G was straightforward, since stu-
dents were given its description in a different formalism and only had to
adapt it for CUP parsing. For the second language, however, they were
given a textual description of the language that they had to formalize into a
CUP grammar. We discarded four submissions that contain reduce/reduce
conflicts, as well as the grammars that produced parsers that pass all tests.
This leaves us with a total of 23 grammars for both languages that we repair.
Note that these grammars are free of semantic actions; we leave handling of
grammars with semantic predicates for future work.

Test Suites. For each target language we generated two test suites from
the instructor’s golden grammars, following the approach outlined in Sec-
tion 2.3.1, and use the CDRC test suite as repair specification, and the more
diverse one to compute the bigrams for patch validation. In the active repair
case, we also generate the CDRC test suite from each generated candidate
patch that we then add to the initial test suite, as described in Section 5.1.8.

Evaluation Metrics. To determine how well the gfixr-repaired grammars
generalize, and to enable a fair comparison between the passive and active
repair configurations, we adopt the evaluation metrics used to evaluate the
accuracy of the learned grammars in the Arvada system [80]. This relies
on validation test suites that are generated from the target (resp. repaired)
grammar to measure recall (resp. precision). Unlike in Arvada, however,
our validation suite includes negative test cases. We generate larger and
more diverse bfsk, deriv, and random test suites. We also use negative test
suites generated via the rule mutation algorithm as validation tests. We
randomly sample 1000 test cases of which a third are negative tests. The
precision, recall, and F1 scores shown in Tables 5.2 and 5.3 are average runs
over five samples of 1000 tests each.

Recall: We use recall to determine how well each gfixr-repaired grammar
variant generalizes to new, unseen tests. Here, we generate the valida-
tion suite from the oracle grammar, and we measure in how many of
the tests in the validation suite the repaired variant is consistent with
the golden grammar (i.e., the generated parser reports the expected
result).

Stellenbosch University https://scholar.sun.ac.za

5.6. EVALUATION 113

Precision: We use precision to determine how closely each gfixr-repaired
grammar variant approximates the repair target. Here, we generate
the validation suite from the repaired grammar variant. We measure
the proportion of tests sampled from this validation suite where the
repaired variant and the oracle grammar are consistent.

F1 Score: We use the F1 score as combined measure of how accurate the
repaired grammar is. It is the harmonic mean of precision and recall.

Note that in the cases where the validation test suite contains only pos-
itive tests, low recall indicates overfitting (i.e., the repair target is overly
specialized towards the input test suite specification) and low precision in-
dicates over-generalization, i.e., the repaired grammar is too permissive.
However, since our validation tests include negative tests, the terms over-
fitting and over-generalizations are not as intuitive as they are when using
only positive tests. For example, when a repaired grammar variant accepts
a negative test generated from the target grammar, that indicates that the
repaired grammar is too permissive and according to our set up above, we
get low recall.

5.6.2 Passive Repair Results (RQ3a)

Table 5.1 summarizes the results of our passive repair approach for the stu-
dent grammars. L is the target language, with test the running example
(see Figure 5.1), and A to H the languages from the different assignments.
bugs is the number of faults in the student grammars revealed by the in-
put test suite TSL. This was determined by manually inspecting the rules
identified as suspicious by a spectrum-based fault localization metric (i.e.,
Ochiai) using TSL for the localization and confirmed in the successfully re-
paired grammar variant.3|TSL| is the number of positive tests in the repair
test suite, with fails the number of failing tests. iter is the number of iter-
ations of the repair loop. We limit the total number of iterations to 150;
when this is reached the repair algorithm stops the search and returns the
best candidate as partial repair. Partial repair entries are shaded grey in Ta-
bles 5.1 and 5.2. cand is the number of candidate grammars generated by
the repair algorithm. time is the overall runtime of the repair; measured as
wall-clock time on an otherwise idle 2.70 GHz server with 36 cores (i.e., 72
hyper-threads) and 378 GB RAM and given as hours:minutes:seconds. The
times include the compilation of the candidate grammars for CUP (and their
corresponding lexical specifications in JFlex format) to Java and further to
executable code, the execution of this code over the test suite, the fault local-
ization, the computation of the grammar predicates for each selected can-

3Note that we could not manually find and fix all bugs for some grammars; this is
indicated by the entry >5. In these cases, gfixr was also unable to find a full fix.

Stellenbosch University https://scholar.sun.ac.za

114 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

Table 5.1: Passive repair results for student grammars. Partial repairs are shaded
grey.

grammar tests gfixr
L |N| |T| |P| bugs |TSL| fails iter. cand. time
1 test 36 32 68 2 86 12 2 43 00:01:29
2 A 46 42 102 1 179 3 150 10744 04:23:53
3 A 49 43 107 1 179 2 1 94 00:02:59
4 B 45 42 88 2 79 2 2 55 00:01:59
5 C 35 27 60 1 86 1 1 2 00:00:30
6 D 45 30 78 1 80 14 1 89 00:02:15
7 E 46 24 79 4 199 14 20 332 00:15:59
8 E 47 32 84 4 199 17 11 576 00:15:25
9 F 39 46 96 2 212 18 5 513 00:39:09

10 F 49 72 145 > 5 212 58 150 36924 15:19:03
11 G 32 49 94 2 194 17 2 398 00:10:35
12 G 32 49 80 - 194 - - - -
13 G 43 49 92 2 194 11 3 188 00:05:54
14 G 53 49 98 9 194 181 9 2412 01:01:30
15 G 31 49 75 1 194 5 3 198 00:05:44
16 G 37 49 84 1 194 3 1 201 00:04:40
17 G 37 49 83 1 194 5 1 22 00:05:51
18 G 38 49 99 4 194 17 7 178 00:08:17
19 G 35 48 87 2 194 10 5 309 00:07:39
20 H 52 62 124 - 205 - - - -
21 H 42 62 110 2 205 46 4 215 00:09:07
22 H 46 62 120 4 205 56 8 3775 01:39:11
23 H 44 62 106 2 205 2 2 38 00:01:49
24 H 54 62 121 4 205 13 4 134 00:07:31
25 H 39 62 102 > 5 205 38 150 11838 08:40:34
26 H 48 62 121 - 205 - - - -
27 H 56 62 139 2 205 12 2 249 00:07:42
28 H 47 59 103 1 205 5 1 89 00:02:29
29 H 61 62 116 1 205 44 1 102 00:06:28
30 H 57 62 116 - 205 - - - -
31 H 49 62 119 2 205 25 2 543 00:14:17
32 H 41 62 110 1 205 1 1 238 00:08:54
33 H 35 62 98 > 5 205 205 150 8704 08:02:41

didate, the application of the actual repair transformations, and the output
of the new candidates in CUP format. The timings are dominated by the
first of these steps: the compilation of the CUP grammars takes on average
about five seconds.
Efficacy. Table 5.1 shows overall promising results, and we can observe a

Stellenbosch University https://scholar.sun.ac.za

5.6. EVALUATION 115

few trends. First, and foremost, gfixr can indeed fix grammar bugs: our
passive repair configuration returns a patch that is consistent with the repair
specification given by the test suite TSL, in all but four grammars (#2, #10,
#25, and #33) where it failed to find the repairs within 150 iterations. This
indicates that the localization directs the repair to the right locations, despite
the fact that the technique it uses is based on single fault assumption and
some studies have shown that multiple fault interactions may harm their
effectiveness [7, 162]. Moreover, it also indicates that the combined patches
are sufficiently expressive. In the failing cases, however, the localization
ranked the faulty location too low, and the repair kept trying to fix correct
rules (see Section 5.7 for a more detailed discussion).

Second, the wall-clock repair times are typically below or around 15 min-
utes using a moderately powerful server, in particular if the grammar con-
tains only a few (up to four) faults. Grammars with multiple faults that
require several patches obviously take longer, but gfixr can still find fixes
comprising patches and in most cases in less than 60 minutes wall-clock
time.4 The overall runtime is approximately linear with the number of can-
didate grammars.

Third, in about half of the cases, the number of iterations of the repair
loop is the same as the number of bugs, and the number of candidate gram-
mars remains small. This again indicates that the fault localization can iden-
tify the faults sufficiently well, and that the priority queue keeps the most
promising candidates on top.

Finally, note that our input test suite TSL (which satisfies CDRC cover-
age) cannot reveal bugs in four grammars (#12, #20, #26, and #30) but the
active repair approach demonstrates that these grammars indeed contain
faults.

Accuracy Evaluation. Table 5.2 shows the accuracy evaluation of our pas-
sive repair approach. Columns Ro, Po, and F1o contain recall, precision, and
F1 score values for the faulty input grammar G, respectively. We include
these values in order to investigate whether the repair does indeed pro-
duce grammars with better quality. From these values, we see that gram-
mars with fewer than five bugs already have moderately high recall scores,
which validates our assumption of the competent programmer hypothesis.
However, low precision scores mean that most the input grammars over-
generalize beyond the target language.

The corresponding recall, precision, and F1 score values for the repaired
variants are shown in columns Rp, Pp, and F1p, respectively. We see from
the table a significant increase in recall in most cases; we even achieve 100%
recall for two grammars (#16 and #17). The precision results, however, are
mixed and sometimes the repaired grammar has lower precision. Over-

4This is scalable because the candidates can be evaluated in parallel, so this gives a
good indication of a real-world scenario.

Stellenbosch University https://scholar.sun.ac.za

116 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

Table 5.2: Summary of results showing accuracy of the passive repair approach
and the number of applied patches for each repaired grammar.

accuracy symbol edit list.
L bugs Ro Po F1o Rp Pp F1p d i s t L1 L2
1 test 2 0.902 0.649 0.755 0.997 0.637 0.777 2
2 A 1 0.972 0.769 0.859 0.975 0.751 0.848
3 A 1 0.972 0.910 0.940 0.999 0.985 0.992 1
4 B 2 0.952 0.902 0.926 0.999 0.910 0.952 1 1
5 C 1 0.969 0.999 0.984 0.977 0.930 0.953 1
6 D 1 0.638 0.465 0.538 0.998 0.759 0.862 1
7 E 4 0.818 0.733 0.773 0.987 0.704 0.822 2 14 3 1
8 E 4 0.579 0.499 0.536 0.974 0.521 0.679 3 2 4 2
9 F 2 0.939 0.792 0.859 0.996 0.560 0.717 3 2

10 F >5 0.697 0.466 0.559 0.909 0.391 0.547
11 G 2 0.743 0.595 0.661 0.956 0.913 0.934 2
12 G - 0.999 0.333 0.460 - - -
13 G 2 0.821 0.333 0.474 0.999 0.589 0.741 1 2
14 G 9 0.366 0.333 0.349 0.991 0.806 0.889 1 6 2
15 G 1 0.931 0.761 0.837 0.999 0.736 0.848 3
16 G 1 0.971 0.574 0.700 1.000 0.875 0.933 1
17 G 1 0.932 0.938 0.935 1.000 0.898 0.946 1
18 G 4 0.886 0.786 0.833 0.915 0.768 0.835 1 4 2
19 G 2 0.936 0.529 0.675 0.963 0.485 0.645 2 1 2
20 H - 0.994 0.553 0.711 - - -
21 H 2 0.896 0.782 0.835 0.994 0.705 0.825 1 2 1
22 H 4 0.860 0.827 0.843 0.952 0.672 0.788 3 1 2 2
23 H 2 0.978 0.894 0.934 0.982 0.899 0.939 1 1
24 H 4 0.912 0.720 0.805 0.953 0.727 0.825 1 1 2
25 H >5 0.945 0.762 0.843 0.974 0.655 0.783
26 H - 0.999 0.549 0.709 - - -
27 H 2 0.984 0.641 0.776 0.984 0.604 0.749 1 1
28 H 1 0.962 0.718 0.822 0.980 0.717 0.828 1
29 H 1 0.899 0.913 0.906 0.985 0.909 0.945 1
30 H - 0.984 0.787 0.875 - - -
31 H 2 0.962 0.805 0.877 0.980 0.810 0.887 1
32 H 1 0.990 0.828 0.902 0.993 0.832 0.905 1
33 H >5 0.332 0.333 0.332 0.918 0.670 0.774

all, this translates to slightly better F1 scores compared to the input gram-
mars. This shows that even though we achieve moderate recall improve-
ments with our passive repair approach, it often produces grammars that
over-generalize beyond the target language. This problem is addressed in
the active repair approach (see Section 5.6.3).

Stellenbosch University https://scholar.sun.ac.za

5.6. EVALUATION 117

Applied Patches. The right-most columns of Table 5.2 give insight on the in-
teraction of the grammar transformations discussed in Sections 5.2, 5.3 and
5.4 to induce the fixes described above. Specifically, it shows for each re-
pair how often each patch type was applied. Here, d is symbol deletion, i is
symbol insertion, s is symbol substitution, while t is the symbol transposi-
tion patches. L1 means right recursion introduction and L2 the list synthesis
patches. Note that we are repairing the input grammar in our experimen-
tal setup against a fixed test suite containing positive tests only; hence, the
language-tightening transformations are never used for repairs. Note also
that we do not consider the patch usage count for partial repairs.

Most patch types are used widely, but symbol transposition is not ap-
plied. More specifically, deletion is applied 22 times, insertion 27 times, sub-
stitution 25 times, and two listification patches are applied 7 and 17 times
respectively.

RQ3a: The passive repair approach is effective in fixing faults in medium-
sized grammars with real faults. It fully repaired 25 out of 33 grammars
against a CDRC test suite for the target grammar as repair specification,
and partially repaired four grammars. The repairs universally improve
the recall but reduce the precision in about half of the cases, indicating
that the repaired grammars over-generalize beyond the target language.

5.6.3 Active Repair Results (RQ3b)

Table 5.3 summarizes the repair results using the active repair approach
described in Section 5.1.8. Here, TSinit comprises the CDRC test suite TSL
that is generated from the target language (that also serves as oracleO), and
an initial CDRC test suite TSG generated from the input grammar G. Note
that TSG can contain negative tests if G over-generalizes L. Table 5.3 shows
the sizes of |TSL| and |TSG|. Columns Ra, Pa, and F1a show recall, precision,
and F1 scores for the repaired grammar, respectively. Candidates where
only a partial repair is found in 150 iterations are again shaded in grey.

Note also that the active repair loop can stop with a candidate that is a
full repair with respect to TSinit but still fails some of the tests generated
from some other repair candidates. These "premature" terminations are
shown in a lighter shade of grey. We could find better repairs by restart-
ing the repair process with these tests added to TSinit, but we leave this for
future work.
Efficacy. First, Table 5.3 shows that the incorporation of the oracle allows
us to construct tailor-made repair test suites from each grammar, by adding
TSG to TSL. This leads, for most grammars, to an increase in the number
of bugs revealed by the test suite TSinit compared to the previous passive
case, e.g., our running example has three bugs here, an increase from just
two in the passive repair experiments. Grammar #2 in particular exhibits

Stellenbosch University https://scholar.sun.ac.za

118 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

Table 5.3: Active repair results for student grammars.

tests gfixr accuracy
L bugs TSinit fails iter. cand. time Ra Pa F1a
1 test 3 (86, 218) 18 4 227 00:06:49 1.000 1.000 1.000
2 A 7 (179, 182) 36 7 1184 00:32:20 1.000 0.976 0.988
3 A 2 (179, 203) 8 2 224 00:06:41 0.999 1.000 0.999
4 B 4 (79, 82) 7 4 324 00:09:50 1.000 1.000 1.000
5 C 1 (86, 104) 1 1 2 00:00:30 0.977 0.935 0.956
6 D 3 (80, 116) 98 4 739 00:20:12 1.000 1.000 1.000
7 E 7 (199, 371 80 15 1605 00:48:49 0.987 1.000 0.993
8 E 8 (199, 137) 78 24 6069 05:57:27 1.000 0.838 0.912
9 F 4 (212, 173) 25 7 1037 01:07:49 0.998 1.000 0.999

10 F >5 (212, 155) 149 150 12972 20:01:01 0.794 0.457 0.580
11 G 4 (194, 221) 33 3 1035 00:34:26 1.000 1.000 1.000
12 G 3 (194, 121) 15 4 245 00:06:32 1.000 1.000 1.000
13 G 5 (194, 104) 22 5 323 00:11:07 1.000 1.000 1.000
14 G 9 (194, 70) 249 10 4934 02:49:56 0.991 0.829 0.903
15 G 5 (194, 209) 25 10 3573 03:02:05 0.962 0.633 0.764
16 G 2 (194, 104) 9 2 316 00:08:41 1.000 1.000 1.000
17 G 2 (194, 104) 11 2 108 00:08:01 1.000 1.000 1.000
18 G 6 (194, 214) 53 18 4184 02:00:55 0.914 0.802 0.854
19 G >5 (194, 134) 41 70 3143 02:12:14 0.832 0.373 0.515
20 H 3 (205, 233) 120 4 485 00:23:54 0.985 1.000 0.992
21 H 4 (205, 213) 134 7 1221 01:05:08 0.994 0.943 0.968
22 H 5 (205, 303) 72 8 3682 02:42:17 0.961 0.839 0.961
23 H 3 (205, 272) 3 3 131 00:05:03 0.982 0.987 0.984
24 H 6 (205, 186) 104 8 1444 01:15:06 0.953 0.999 0.975
25 H >5 (205, 300) 137 150 9196 07:59:45 0.973 0.806 0.881
26 H 1 (205, 265) 119 1 324 00:08:56 0.999 0.952 0.975
27 H 3 (205, 306) 172 4 1033 00:58:53 0.984 0.971 0.977
28 H 4 (205, 114) 71 7 1126 00:53:28 0.980 0.909 0.943
29 H 1 (205, 113) 44 1 102 00:06:54 0.985 0.904 0.943
30 H 3 (205, 160) 3 3 308 00:15:04 0.984 0.999 0.991
31 H 3 (205, 227) 44 3 637 00:33:13 0.980 1.000 0.990
32 H 1 (205, 322) 1 1 238 00:13:20 0.993 0.836 0.908
33 H >5 (205, 261) 466 150 11586 15:28:59 0.921 0.740 0.820

the biggest jump from one bug revealed in the passive case to seven here.
We see also that TSinit now reveals bugs in grammars #12, #20, #26 and #30
that were marked as non-buggy in the previous experiment.

Second, our approach finds fixes in less than 20 iterations in most cases.
This also shows that the fault localizer remains effective and identifies faults
sufficiently well. However, the active repair still returns partial repairs for

Stellenbosch University https://scholar.sun.ac.za

5.6. EVALUATION 119

six grammars. Out of these, grammars #10, #25, and #33 require more than
150 iterations and the repair loop terminates prematurely for the grammars
#15, #18, and #19.

Third, repair times are typically below 30 minutes, with about five gram-
mars where the full repair took more than 60 minutes. This is a significant
increase in runtimes compared to the passive case, but an increase in the
number of revealed bugs trivially means we see an increase in the number
of iterations and generated candidate patches.

Finally, we see that the active repair configuration can direct the fault
localization. For example, for grammar #2 in the passive case, it took over
four hours and 150 iterations to fix one fault that caused three test failures
because the fault localizer could not identify the correct repair site because
of some unexpected behaviour in CUP’s parsing algorithm. Here, however,
the faulty rule was correctly identified because the oracle rejected all test
cases where it was applied in their derivation.

Accuracy Evaluation. The second part of Table 5.3 gives the detailed ac-
curacy of the fixes. We see that our active repair approach significantly
improves recall; we even achieve 100% recall in ten cases (i.e., in about a
third of the cases). The active repair approach also produces "tight" patches
with respect to the target language. We achieve perfect precision in thir-
teen cases, which is about half of the cases where the repair loop returned a
full fix. The repaired grammar variants, on average, improve the quality of
the input grammars by about 1.5×. These variants approximate the target
language sufficiently well, in fact, we even achieve 100% F1 score in eight
cases, which demonstrates that the subsets of the languages described by
one these repaired grammar variants and their corresponding target gram-
mar are (approximately) equivalent with respect to the validation suite.

In addition to some limitations (see Section 5.7 below) that in some cases
prevent the active repair approach from achieving 100% precision, we also
observed some sampling biases effects as described by Rossouw and Fischer
[132]. In fact, we generate test suites using the same generic cover algorithm
(see Section 2.3.3) they used to describe and evaluate these biases. In our
repair case here, counter-examples are not generated that would make the
right patches to have better fitness than patches that over-generalize (i.e.,
make the grammar too permissive) the language. We show how it compares
to the passive repair approach in the next section.

Applied Patches. Table 5.4 gives the details on the The patch types are la-
beled as before but we now also include language tightening patches here:
S refers to non-terminal and token splitting patches, D rule deletion patch,
P push-down list elements patches and E to immediate recursion elimina-
tion patches.

Like in the passive case, most of the patch types are used widely, but
symbol transposition remains unused. More specifically, deletion is applied

Stellenbosch University https://scholar.sun.ac.za

120 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

Table 5.4: Patches applied by the active repair approach for each faulty grammar.

symbol edit list. tightening
L bugs d i s t L1 L2 S D P E
1 test 3 2 1 1
2 A 7 1 1 2 4
3 A 2 1 1 1
4 B 4 2 2
5 C 1 1
6 D 3 1 2 3
7 E 7 2 2 1 4 6 1 2
8 E 8 3 2 17 19
9 F 4 1 5 1 2

10 F >5
11 G 4 1 1 1
12 G 3 3 4
13 G 5 4 1
14 G 9 1 7 3
15 G 5
16 G 2 1 1 1
17 G 2 1 1 1
18 G 6
19 G >5
20 H 3 1 2
21 H 4 1 2 1 1 3
22 H 5 3 2 2 1 1
23 H 3 1 1 1
24 H 6 4 1 4
25 H >5
26 H 1 1
27 H 3 2 1 1
28 H 4 1 5 5 1
29 H 1 1
30 H 3 2 2 1
31 H 3 1 1 1
32 H 1 1

33 H >5
Total 16 8 17 0 9 18 42 62 3 10

16 times, insertions 8 times, substitution 17, and two listification patches
are applied 9 and 18 times respectively. We also see that non-terminal (and
token) splitting and rule deletion (used 42 and 62 times, respectively) are the
most widely used language tightening transformations, with rule deletion
used in all but 4 grammars. The last two list tightening patches are applied

Stellenbosch University https://scholar.sun.ac.za

5.6. EVALUATION 121

input passive active
0.0

0.2

0.4

0.6

0.8

1.0

(a) Recall.

input passive active
0.0

0.2

0.4

0.6

0.8

1.0

(b) Precision.

input passive active
0.0

0.2

0.4

0.6

0.8

1.0

(c) F1 scores.

Figure 5.2: Accuracy evaluation results for passive and active grammar repairs.
Higher is better. Recall results on the left plot, precision results in the middle and F1
scores on the right. input shows results for input grammar G, passive for passive
repair approach and active for active repair approach.

3 and 10 times respectively.

RQ3b: The active repair approach is effective in fixing faults in medium-
sized grammars with real faults. It fully repaired 27 out of 33 grammars,
and partially repaired six grammars. The repairs universally improve the
recall, precision, and the F1 scores in about more than half of the gram-
mars.

5.6.4 Passive Repair vs Active Repair (RQ3c)

In this section, we compare the passive and active repair approaches "like-
for-like" for all 33 grammars. Figure 5.2 summarizes the results of this com-
parison through a series of boxplots. We see that active repair produces
repairs with slightly better recall, but achieves 100% recall in ten grammars,
while passive repair achieves that in only two cases. We also observe the
passive repair approach induces patches that over-generalize beyond the
target language, as its repaired grammars give low precision values. In the
active case, however, incorporating test suite generation and membership
queries to the oracle into the repair loop, prevents some over-generalization
to some degree even when using weaker test suites like CDRC as repair
specifications.

Despite high runtime costs and naturally more memory usage, we can
conclude that the active repair approach produces patches of higher qual-
ity and lower F1 scores of the passive repair approach show that over-
generalization is prevalent when repairing against a fixed test suite.

RQ3c: The active repair approach produces patches that generalize better
than the passive repair approach.

Stellenbosch University https://scholar.sun.ac.za

122 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

5.7 Limitations

In this section, we discuss some limitations that affect the efficacy of our
proposed repair approaches. These can, in part, be attributed to our choice
of parsing tools, more generally the underlying parsing algorithms, and to
shortcomings of our realization of both approaches in gfixr.

5.7.1 Mislocalization due to Unexpected Behaviour

The first limitation concerns CUP, the parser generator we use to log gram-
mar spectra for fault localization. More specifically, we illustrate how, in
some cases, CUP returns the wrong spectra and therefore does not identify
the faulty rules. Consider in particular grammar #2 from Table 5.1, where
startVarIDs- and variableIDs-rules are defined as follows:

startVarIDs→ IDENT variableIDs
variableIDS→ • IDENT COMMA variableIDs | ε

The original intent was to capture a COMMA-separated list of identifiers (IDENT).
The fault location (identified by a manual inspection) is marked by •. The
grammar fails the following three test cases

EENHEID a BEGIN VER a •, a : WAARHEID EINDE a .

EENHEID a BEGIN
FUNKSIE a(a •, a : WAARHEID) : WAARHEID := BEGIN EINDE a
EINDE a .

EENHEID a BEGIN VER a •, a, a : WAARHEID EINDE a .

We also use the •-symbol here to mark the error location observed in the
inputs.

All items from the startVarIDs-rule, i.e., startVarIDs:1:0, startVarIDs:1:1
and startVarIDs:1:2 have the same spectral counts, each with a fail count of
3 and pass count of 26. Our tie resolution strategy that prefers items with the
right-most designated position over other items from the same rules in a tie,
picks the reduction item startVarIDs:1:2. The item variableIDs:2:0 (i.e., the ε-
production) also has the same counts as the items from the startVarIDs-rule
because the ε-production is applied just before the error location. However,
none of the items (which include the faulty variableIDs:1:0) from the first
alternative of the variableIDs-rule are executed in any of the test cases, i.e.,
the rule is not executed in either failing or passing test cases and therefore
has spectral counts of zero. Hence, it is never selected for repair.

The above illustration explains why it took gfixr a little over 4 hours, 150
iterations and generated 10744 candidate patches as shown in Table 5.1.

Stellenbosch University https://scholar.sun.ac.za

5.7. LIMITATIONS 123

5.7.2 Parsing Restrictions

As we mentioned earlier, applying splitting patches to a rule A → γi can
introduce parsing conflicts. In our experimental evaluation, we observed
that conflict introduction is indeed prevalent despite some control measures
we put in place to mitigate their effects. First, we do not attempt to repair
input grammars with reduce/reduce conflicts to prevent parsing instability.
Second, we discard patches that introduce reduce/reduce conflicts into the
grammars (except for two cases in the passive repair experiments where
we set the number of allowed reduce/reduce conflicts to one (i.e., -rr =
1)). Finally, for grammars #20 to #33, we set the flag -non_lr because the
language is inherently ambiguous by design.

While in most cases, we got along fine with enabling -non_lr, in some
cases LR(1) parsing restrictions did not allow the search to stop with the
required high quality patches. In particular, in grammar #8 where the tar-
get language has the same expression structure as our example grammar in
Figure 5.1. The simple- and simple_list-rules are written as

simple → term simple_list | - term simple_list
simple_list→ simple_list addop | simple_list term | ε

The oracle rejects some test cases derived from these rules, including the
tests

source a begin a ::= 0 - end
source a begin a ::= a a a end

The non-terminal splitting patch correctly transforms the simple_list- rule to
the following seven alternatives

simple_list→ simple_list addop term | simple_list term term | term
| simple_list addop addop | simple_list term addop | addop | ε

The expectation was that, in the next iteration, gfixr would apply rule dele-
tion patches to the second, third, fourth, fifth and sixth rules of simple_list,
as they get applied in the generation of rejected tests and incorrectly accept
the two test cases shown above. Deleting these rules would leave us with
the following correct simple_list rules

simple_list→ simple_list addop term | ε

However, the LALR parsing algorithm implemented by CUP is too restric-
tive and did not allow for this, and gfixr returned a patch with 0.838 preci-
sion.

5.7.3 Loop Restart

In active repair, the basic idea of a repair loop restart is to stop the search af-
ter some iteration i when some specified condition is met, collect all the

Stellenbosch University https://scholar.sun.ac.za

124 CHAPTER 5. AUTOMATIC GRAMMAR REPAIR

information learned so far, this includes the candidate C at the front of
the priority queue that awaits further processing, and current set of failing
tests TSF from the common test pool TS. Then (automatically or manually)
restart the repair process with the candidate C or even the input grammar
G, with the user-provided input test suite, and previous failing test cases
TSF added to the new common test pool TS′.

While the development of several conditions that warrant restarting the
search are left for future work, the current version of gfixr prompts the user
to manually restart the repair process when the candidate variant C at the
front of the queue is consistent with the oracle O on the initial test suite
(recall from Table 5.3 that this includes a user provided seeds and test suite
generated from the faulty input grammar G), but rejects a test case w ∈
L(O) that was added to TS in some later iteration. Patches from grammars
#15, #18, and #19 were prompted to restart the search.

5.8 Threats to Validity

Our observations are based on experiments conducted using medium-sized
grammars written by students. While the faults made by students are real
and tend to be unpredictable, our results may not generalize to other gram-
mars, to other ranking metrics, or to other parsing environments.

The grammar transformations described in this work are mostly example-
driven; we carefully inspected different faults and designed corresponding
transformations that target these faults. They may not be sufficient to other
target grammars. However, the different patch types are widely used in
most grammars, which gives us some confidence in their generality. Our
implementation also allows for easier integration of more transformations.
However, we focus almost exclusively on syntactic elements; the token cre-
ation and splitting transformations only address specific lexical issues and
grammars suffering from other lexical problems may not be fixable.

Finally, we mitigated against the usual internal validity threats of human
error, human bias and human performance by automating experiments,
carefully tested our implementation and scripts, and by using well-established
tools for item-level spectra collection and test suite generation.

5.9 Conclusion

This chapter introduced and described our generic grammar repair frame-
work with all its necessary ingredients. We presented two variants of our
general repair approach. In the passive repair variant, we repair an in-
put grammar against a fixed test suite specification, while the active repair
variant exploits a boolean oracle that is capable of answering membership

Stellenbosch University https://scholar.sun.ac.za

5.9. CONCLUSION 125

queries on the test suite enrichment adding tests derived from each gener-
ated repair candidate.

These ideas are then implemented in a prototype tool gfixr that takes as
input a grammar G in CUP-format and a test suite TSL, and automatically
constructs a "similar" grammar G′ that accepts all positive and rejects all
negative tests for the intended target language.

We have successfully used gfixr to fix 33 grammars students submitted
as homeworks in compiler engineering course. We showed how both re-
pair configurations produce grammars improved in quality over the input
grammars. We have also demonstrated that the active repair setting pro-
duces more grammars that capture the original intent of the grammar better
than the passive repair.

Stellenbosch University https://scholar.sun.ac.za

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

Related Work

We are not aware of any work that directly shares our high-level goal of
reporting the exact locations of bugs in context-free grammars and auto-
matically fixing those bugs. However, there are related work from several
areas that inspired our approach.

6.1 Spectrum-Based Fault Localization

Dating back to the late 1970s, the field of software fault localization has been a
popular area of research and continues to be an important track in today’s
major software engineering conferences and journals, with new techniques
and the application of existing ones to other areas such as automated pro-
gram repair still being proposed. Many techniques have been applied to
the problem of fault localization, e.g., program slicing, machine learning,
model-based techniques, program spectrum-based techniques, etc. Wong
et al. [158] gives a very comprehensive overview of the entire field and high-
lights advantages and disadvantages, limitations, issues, and concerns for
the different techniques. This thesis focuses exclusively on spectrum-based
techniques [32, 158].

Spectrum-based fault localization (SFL) employs data gathered during the
execution of test cases to identify faulty program fragments. The origins of
SFL methods can be traced back to work by Collofello and Cousins [28] who
analysed executed paths to identify faulty sites. As a subfield of fault local-
ization, SFL attracted a great deal of attention, with different kinds of tech-
niques being proposed. However, this work borrows heavily from metric-
based SFL techniques that formulate different ranking metrics. These rank-
ing metrics utilize coverage data (or program spectra, see Section 2.4 for
more details) to compute a suspiciousness score for each program entity.
Higher scores indicate higher bug likelihood.

There have been more than 40 different ranking metrics proposed for
SFL [32, 57, 112, 158]. Tarantula [69, 70] is considered to be one of the first

127

Stellenbosch University https://scholar.sun.ac.za

128 CHAPTER 6. RELATED WORK

metrics to be used for SFL and it has been extensively used as a baseline to
benchmark new techniques [109, 157]. Naish et al. [109] propose two met-
rics O and OP optimized for single-fault programs and empirically evaluate
their performance with respect to other metrics using the Siemens and Space
benchmarks. While we do not use these two specific metrics in this work,
the authors highlight the very important insight that most of the metrics
yield identical results. Using equivalence relations, Debroy and Wong [34]
theoretically show that some metrics do indeed produce similar rankings.
In this work, we use four of the widely used metrics that have performed
well in other experimental evaluations [6, 89]: Tarantula [69, 70], Ochiai,
which was first applied to problems in Botany [115], Jaccard [26], which
was used in the information retrieval domain, and DStar [157].

It is worth noting that Tarantula takes into account all four basic counts
(see Section 2.4.1), while the other three metrics used in this work omit pro-
gram elements not executed in passing tests. Experimental results [6, 157]
show that Ochiai, Jaccard and DStar outperform Tarantula. Our evaluation
results also confirms that Tarantula performs the worst of the four metrics
and that Ochiai, Jaccard and DStar cannot experimentally be told apart in
terms of performance under different scenarios.

There exists work that departs from proposing new ranking metrics, but
exploits spectral information in various controlled ways in order to improve
SFL. Zhang et al. [172, 173] present methods that incorporate both dimen-
sions of spectral analysis (i.e., program elements and the test suite) to boost
SFL. They specifically use the PageRank algorithm [117] to recompute ex-
ecution traces, and traditional ranking metrics can then be used to assign
rankings. We adapted these ideas and used the PageRank algorithm for
our fault localization task. We however did not obtain significant gains
and some metrics’ (esp. DStar) performance suffered. Santelices et al. [137]
combine different levels of granularity (statements, control flow, and data
flow) to improve SFL. These ideas do not directly translate to the domain
of grammars, although we experimentally showed that our item-level fault
localization gives more precise results than the base rule-level fault localiza-
tion. Gopinath et al. [52] propose using SAT technology to improve SFL by
annotating program elements with specifications and returns elements that
violate some constraints. Again, this does not translate into our domain,
and our work does not apply specification-based methods in tandem with
SFL.

Our experiments in Sections 3.6 and 4.4 evaluate the efficacy of our SFL
approach using grammars with seeded faults. Fault seeding has been used
extensively in the literature [5, 109, 156] although we use different, domain-
specific mutation operators. We further successfully evaluate our solution
over grammars with multiple faults in Sections 3.6 and 5.6 even though it is
well known that SFL techniques are based on a single-fault assumption and
that their accuracy deteriorates for programs with multiple faults [7, 162].

Stellenbosch University https://scholar.sun.ac.za

6.2. AUTOMATIC PROGRAM REPAIR 129

One of the open questions in SFL is tie resolution. Xu et al. [161] present
an evaluation of three heuristics for breaking ties viz., statement order-,
confidence- and data dependency- based strategies. Our item-level fault
localization uses a simple strategy that prefers the right-most item of a rule
which can be seen as a domain-specific version of a statement-order based
tie breaking strategy. Our attempts to resolve ties by further exploiting the
hierachical structure of the grammar did not produce favourable results. Fi-
nally, Steimann et al. [145] study the threats of validity for SFL. Our work
inherits most of the threats of validity outlined in their study.

6.2 Automatic Program Repair

Automatic program repair (APR) techniques, also called automatic patch gen-
eration or automatic bug fixing, take as input a faulty program and a set
of test cases which include at least one fault-revealing test case, exploit
fault localization to identify potential repair sites, apply modifications ei-
ther directly at source code or binary level to these sites and give an out-
put of a repaired variant of the program that is consistent with the input
test cases or meets some specifications or output none if the repair cannot
be found. This area of research is still relatively young, and seminal work
can be traced back to the late 1990s [148] and early 2000s. APR comes in
different flavours, e.g., generate-and-validate, semantics- and data-driven
techniques. We identify three studies that give a comprehensive overview
of the field [48, 49, 108].

We discuss generate-and-validate (see 6.2.1) and semantic-driven (see
Section 6.2.2) approaches in this thesis because they are the most studied
techniques. These techniques have been shown to suffer from overfitting
and generated patches may not generalize to different, previously unseen
tests [55, 92, 93, 127]. Some studies propose ways to mitigate overfitting and
generalization issues [91, 107, 159, 160], but this work is out of our scope.

6.2.1 Generate-and-Validate Techniques

Like our repair task, many approaches are based on generating candidate
patches using different search strategies such as genetic programming [12,
13, 14, 47, 94, 154, 155], random search [67, 125, 126], or bug templates [62,
75, 79, 96, 97, 98, 103, 135] and validating each candidate patch over a test
suite.

The most notable approach in this category is GenProg [47, 94, 154, 155]
that searches for candidate patches using genetic programming operations.
It specifically modifies the input program by applying crossover and muta-
tion (deleting, inserting, or transposing statements) operations on all state-
ments flagged as suspicious. Application of these modifications is based on

Stellenbosch University https://scholar.sun.ac.za

130 CHAPTER 6. RELATED WORK

the redundancy assumption [93] that follows the intuition that the fix already
exists elsewhere in the program. GenProg defines its own simple fault local-
ization strategy that assigns each statement executed exclusively in failing
test cases a value of one, statements executed only in passing tests a value of
zero and a fractional value for statements executed in both failing and pass-
ing test cases. Each generated candidate patch is validated by compiling
and running it over the same set of test cases and a fitness score, defined as
a weighted sum of passing and failing tests, is computed for each candidate.
Candidates with higher fitness scores are retained for further modifications,
while those with a lower fitness score are discarded. We use similar ideas
in our repair approach, specifically, our patch selection strategy is similar to
that used by GenProg. We can easily re-configure our repair tool gfixr to use
GenProg’s fault localization strategy as well.

More recent work adapts the core ideas of GenProg and applies them to
problems in other domains and programming languages. JGenProg2 [101,
102] is a Java re-implementation of GenProg. The original tool targets C
code. Gissurarson et al. [50] describe PropR, a tool that utilizes GenProg’s
core algorithm to suggest fixes for buggy Haskell programs. Ahmad et al.
[8] propose a genetic programming based tool, CirFix that repairs defects in
hardware designs implemented in Verilog.

RSRepair [126] is built on top of GenProg and uses the same mutation
operators, but substitutes the genetic programming search with a random
search. The authors show that it outperforms GenProg both in the quality
of repair and speed of search. It also employs the same fault localization
strategy but differs in the patch selection for mutation. Each iteration only
considers one candidate patch and instead is discarded immediately if it
does not improve over the parent. RSRepair boasts substantial speed-ups
because the algorithm it implements also does away with fitness score com-
putation for each candidate patch, but invokes a test prioritization based
strategy for its validation step. However, the optimizations employed by
RSRepair make it ill-suited for repairs that require multiple iterations.

Moving on from the GenProg family of approaches, some studies apply
mutation testing ideas to program repair [33, 49, 102]. Debroy and Wong [33]
propose an approach that heavily relies on the spectrum-based fault local-
ization metric Tarantula to identify repair sites. They apply two kinds of
mutation operators at each site: replacement of an operator (arithmetic, re-
lational, logical, assignments and pre- (resp. post-) increment (resp. decre-
ment) with one from the same class, and inversion of conditions in if- and
while-statements. Martinez and Monperrus [102] present a modular Java re-
implementation of the ideas presented by Debroy and Wong [33]. Ghanbari
et al. [49] present PRaPR that applies mutation operators on the JVM byte-
code at the suspicious locations computed using the Ochiai metric. Our
grammar transformations can be seen as domain-specific mutations and
those used in these studies are not easily transferrable to our work.

Stellenbosch University https://scholar.sun.ac.za

6.3. GRAMMAR-BASED TEST SUITE GENERATION 131

Finally, other generate-and-validate methods use code templates. Kim
et al. [75] present another GenProg derivative called PAR that replaces the
mutations with carefully extracted code patterns. The authors manually
inspected a little over 60K human code patches, from which they derive
ten fix templates. They show that the PAR system outperforms GenProg in
the quality of patches and also finds more fixes. Other notable studies that
mine fix templates for program repair include [98] (which mines code pat-
terns from StackOverflow), and work by Koyuncu et al. [79] which defines
a reusable template mining library that can be used by other tools.

6.2.2 Semantics-Driven Techniques

In semantics-driven approaches, the faulty code fragments (dentified us-
ing spectrum-based fault localization approaches) are executed symboli-
cally while the non-faulty fragments are executed using concrete values us-
ing symbolic execution. One such approach that is implemented by the tool
SemFix [113, 133], first, uses the Tarantula ranking metric to identify faulty
program locations. Second, for each location, the symbolic execution engine
KLEE [23] is used to generate a repair constraint (a tuple of path conditions
and symbolic output). Lastly, a program synthesis routine is invoked to
solve the repair constraint. Mechtaev et al. [107] address the scalability is-
sues in semantics-driven approaches by using a lightweight representation
of a repair constraint called an angelic forest that is well suited for fixes in
multiple locations. These ideas are implemented in a tool called Angelix
which targets C code. JFix [90] is an extension of Angelix for Java programs;
it uses Symbolic PathFinder [121], a widely used symbolic execution en-
gine for Java. Ke et al. [72] describe a repair approach implemented in a
SearchRepair tool that maintains a database of human-written patches en-
coded as SMT constraints. Each faulty statement is executed symbolically to
extract repair constraints. The repair constraints are then resolved through
a semantic search in that database.

Semantics-driven repair approaches share the use of spectrum-based fault
localization methods with our work, but because grammars do not have an
equivalent executable semantic model, their underlying ideas are not obvi-
ously applicable to our domain.

6.3 Grammar-Based Test Suite Generation

Since the fault localization and repair tasks described in this thesis rely on
test suites, we need to ensure that these test suites sufficiently cover the
syntactic structure of the target language L. In some application scenarios
(e.g., education, grammar migration, or language modification) we can take
advantage of a grammar for L that may be available, even if is not accessible

Stellenbosch University https://scholar.sun.ac.za

132 CHAPTER 6. RELATED WORK

to the grammar developers (e.g., the instructor’s grammar that is hidden
from the students), or if it is the wrong formalism (e.g., grammar migration)
and automatically generate detailed test suites.

Systematic Positive Test Suite Construction. Purdom [124] in 1972 first
proposed an algorithm to test grammars and grammar-aware tools using
automatically generated test suites from a context-free grammar. The algo-
rithm aims to generate a minimal set of test cases that exercise all the rules
of the grammar. Malloy and Power [100] provide a modernised, structured
and modular re-implementation of Purdom’s algorithm. The algorithm can
be summarized in three steps. The first two steps collect static information
about the grammar, in particular, the minimal yield for each symbol and
the shortest derivation for each grammar rule. In the final step, the algo-
rithm starts derivations from the start rule and expands unexercised rules,
one at a time, while also marking the corresponding non-terminal symbols
as used. We however do not use Purdom’s algorithm in our work, based
on the conjecture that the generated test cases are not specially suitable for
fault localization because of the complexity of each individual test cases.

We evaluate both solutions proposed in this work over a series of test
suites that are systematically constructed using the generic cover algorithm
used in approaches by Fischer et al. [43] and Havrikov and Zeller [56]. The
algorithm guarantees test suites with the required syntactic coverage and
variance. These generated test suites also satisfy several grammar coverage
criteria, e.g., the most straightforward criterion and perhaps the simplest
intuitively is rule coverage that ensures, just like Purdom’s algorithm, that
every rule of the grammar is exercised. The main difference is that the max-
imum coverage of the grammar achievement is concentrated on the indi-
vidual test cases in Purdom’s algorithm, i.e., the algorithm "stuffs" as many
rules into a test as possible. Lämmel [82] defines a generalization of rule
coverage called context dependent rule coverage (CDRC) which applies each
A-rule to all occurrences of the non-terminal A in the grammar. CDRC pro-
duces richer test suites and has become a baseline coverage criterion in the
field.

There exist variations of CDRC that induce longer and deeper deriva-
tions. We use k-step derivations (also known as k-path coverage [56]). The
basic idea behind k-step derivations is, for every embedding S ⇒∗ αXω, to
find a derivation for a pair (X, Y) ∈ V ×V in at most k steps. van Heerden
et al. [150] evaluate derivable pair coverage that the authors describe as a fix
point version of k-step. Another CDRC variant that explores deeper deriva-
tions is called, bfsk [150] that simultaneously covers all occurrences of a rule
A.

Some work take an analytical view of grammar-based test suite construc-
tion: this test suite generation mechanism works from the automata repre-
sentation of the grammar and generates tests through exploring all state

Stellenbosch University https://scholar.sun.ac.za

6.3. GRAMMAR-BASED TEST SUITE GENERATION 133

transitions of the automata [131, 170]. More recently Rossouw and Fischer
[131, 132] describe two LR graph traversal based algorithms that initially
translate LR(0) automata produced by HYacc [142], a variant of Yacc [68]
that accepts all LR(1) grammars, into LR graphs. The authors define ex-
plicit conditions on path selection that lead to positive tests. Their approach
can be thought to simulate LR parsing. Evaluation over two large real world
grammars shows their approach is scalable. In our work, (in particular in
the active repair approach), the test suite generation is used as a black-box
algorithm. We achieved good results with the generic cover algorithm and
we leave a comparison to LR-based algorithms as future work.

Systematic Negative Test Suite Construction. In the literature, the genera-
tion of positive test suites that contain syntactically valid tests has enjoyed
more attention than negative test suite generation. Zelenov and Zelenova
[170] described the first algorithm to generate negative tests. Rossouw and
Fischer [131, 132] also give a LR-based algorithm for negative test suite gen-
eration that uses local (edge level edits) and global (stack operations) muta-
tions. However, these algorithms are complex. Raselimo et al. [130] propose
simple word and rule mutation algorithms that produce tests that contain
single and well-defined errors. The basic idea behind negative test suite
construction via word mutation is to introduce a poisoned pair (defined as a
pair of tokens that can never occur next to each other in every derivation
from the start rule) to a positive test. Rule mutation systematically modifies
the rules of the grammar so that any derivation from the start rule that ap-
plies the mutated rule results in an invalid word. We evaluate our approach
using these word and rule mutation test suites, and rely on the active repair
algorithm to prevent overgeneralizations.

Random Test Suite Construction. Beyond systematic test suite construction
methods, other approaches are based on random rule selection and applica-
tion in derivations until a complete test case is generated. Such approaches
use various control parameters (e.g., derivation depth, length, rule probabil-
ities, balance, dependence and construction restrictions and many others) to
avoid combinatorial explosion and generate test suites with certain charac-
teristics [21, 58, 59, 61, 83, 104, 105, 122]. van Heerden et al. [150] experimen-
tally show that purely random test suites outperform systematic test suites
both in code coverage and triggering more crashes in hand-rolled one pass
compilers written by students. We use random test suite construction to
complement the systematic test suite construction. Random sentence gen-
eration approaches have enabled many grammar-based fuzzing tools that
have been used to discover many bugs and security vulnerabilities in soft-
ware. Some notable work apply these random methods in tandem with
differential testing [106] to effectively address the test oracle problem (i.e., the
difficulty to confirm if the observed output agrees with the expected out-
come). CSmith [163] employs such techniques and generates well-formed

Stellenbosch University https://scholar.sun.ac.za

134 CHAPTER 6. RELATED WORK

programs by construction, and has been used to test C compilers. The
RAGS system [141] has successfully found many bugs in many SQL sys-
tems. Java runtime environments have been subjected to similar techniques
[164]. Many other grammar-based fuzzing tools exist and target different
use cases. LangFuzz [164] and IFuzzer [151] randomly generate sentences
from a generic grammar and often exploit a given corpus to extract seed
code fragments. Nautilus [15] uses feedback from the system under test to
further guide sentence generation. Some grammar-based fuzzers (e.g., Sky-
fire [152] and Superion [153]) are built specifically to be used as frontends
to popular coverage-guided grey-box and grammar-blind fuzzers such as
AFL [166] and libFuzzer [63].

6.4 Grammar Engineering
Grammar engineering denotes the systematic application of software en-
gineering techniques to the development of CFGs. In that case, our work
can be seen as grammar engineering. Below we discuss further grammar
engineering approaches.
Grammar Transformations. Lämmel and Zaytsev [81, 167] have defined
general grammar transformations and used them for grammar construc-
tion, refactoring, and adaptation [85, 168], including the extraction and com-
parison of several complete grammars from different language specifica-
tions [84, 86]. Such transformations could also be used for grammar repair,
although our experiments have shown that our small set of transformations
is already sufficient. Jain et. al [66] propose a semi-automatic approach for
building new rules starting from an approximate grammar and a knowl-
edge base of common grammar constructs. However, this work relies on a
human expert to select from a large number of expressive grammar trans-
formations. Our approach, in contrast, is fully automatic.
Grammar Convergence. Lämmel and Zaytsev [85] propose grammar conver-
gence; a transformation-based method that systematically modifies any pair
of input grammars G′ and G′′ until they are structurally equivalent. Gram-
mar convergence builds on two carefully designed grammar engineering
disciplines, first, grammar comparison: which comprises scanning both input
grammars and flagging nominal and structural differences between them,
and second, grammar transformation: which builds on the previous step, and
defines and applies meta transformation function f to G′ so that it struc-
turally approximates G′′. The result f (G′) is said to be f-equal to G′′. In
hindsight, the problem this thesis addresses seems to be trivial – after all,
we could simply apply grammar convergence methods to automate gram-
mar debugging. However, resorting to such methods presents a myriad of
challenges that invalidate their suitability. Firstly, and perhaps most im-
portantly, grammar convergence does not generalize; it requires white-box

Stellenbosch University https://scholar.sun.ac.za

6.4. GRAMMAR ENGINEERING 135

access to both the grammar under test and the reference grammar (and they
should presumably be in the same format). This makes it almost incom-
patible with some application scenarios, for example, when we have a test
suite TS for an unknown target language (which is possibly described by
an unavailable grammar) and an input grammar G that fails at least one
test case t ∈ TS and the goal is repair G to be consistent with TS. This is
typically the case in teaching, where students develop grammars from a tex-
tual description of a target language and a few given test seeds. Secondly,
the grammar comparator used would judiciously flag input grammars as
"different" even in simpler cases where different naming convention mech-
anisms are used. For example, one of the two Pascal grammars that claim
to define the same specification (which is rebutted [99, 128]) uses the snake
case naming convention, while the other chooses Pascal casing. And finally,
the cost of grammar convergence is high, as it requires human expertise to
select from numerous expressive grammar transformations.

Grammar Smells. Faults in grammars can manifest themselves in non-
terminal symbols that are non-productive or unexpectedly nullable, or in
ambiguities that could be resolved unexpectedly by a (deterministic) parser.
While non-productivity and nullability are easily checkable, ambiguity is
undecidable in general [24], although several practical approximations have
been developed [18, 22, 138, 139, 140]. Basten’s approach [18] identifies
rules that are provably not involved in an ambiguity and so helps with
localization. LR parser generators typically report any shift/reduce and
reduce/reduce conflicts that they encounter; Isradisaikul and Myers [65]
produce "unifying counterexamples" for such situations that can help users
to debug their grammars.

However, none of these approaches can really be seen as fault local-
ization, because the situations that they detect are grammar smells rather
than necessarily faults. Consider for example the traditional "dangling else"
problem [10]. Most LR parsers resolve the ambiguity indicated through
shift/reduce conflict by shifting, and so accept the intended language. Sti-
jlaart and Zaytsev [147] provide a comprehensive classification of different
grammar smells.

Grammar Equivalence. Proving the equivalence of the grammar under test
to a given "golden" grammar can be seen as an alternative to fault local-
ization, similar to the way proving a program correct is an alternative to
testing. CFG equivalence is of course well-known to be undecidable in
general, but decision algorithms have been developed for several relevant
subclasses, e.g., simple [19, 78], LL(k) [116], or LL-regular grammars [114].
Madhavan et al. [99] describe a system that implements several of these
algorithms and can produce counter-examples when it finds that the gram-
mars are not equivalent. Fischer et al. [43] use systematic test case gener-
ation and parsing to identify which non-terminals accept the most similar

Stellenbosch University https://scholar.sun.ac.za

136 CHAPTER 6. RELATED WORK

languages, which can be seen as an approximate, fine-grained equivalence
check. Such approaches could be used to validate repairs that are found by
our repair approach.

6.5 Grammar Learning

Grammar learning (also known as grammatical inference) denotes a process of
deriving an adequate grammar for a finitely presented (e.g., via examples)
but typically infinite language. While there are different techniques applied
to the problem of grammar learning, in this thesis, we discuss search-based
methods (in particular, methods that employ genetic algorithms) and induc-
tive grammar learning methods.
Genetic Grammar Learning. Genetic algorithms (GA) have been used to
learn CFGs from test suites. The applied genetic operations include point
mutations such as replacement, insertion, or deletion of symbols [37] and
modification of EBNF operators [30] in a single rule, global mutations such
as merging and splitting of non-terminal symbols [123], mutated rule dupli-
cation [37], or different rule generalizations [123], and different crossovers
where rules from one grammar are spliced into the other. Our transforma-
tions are similar to those mutations, but we give explicit, static conditions
for their viability, and immediately validate them against the sample bi-
grams, which reduces the number of possible applications; note that sam-
ple bigram validation is only useful in repair, where the parent grammar
is already a good approximation of the target language. We do not use
crossovers, because we repair a single initial grammar and all candidate
grammars have been derived from this, so that crossovers do not add diver-
sity.

The fitness of a grammar is usually evaluated, as in our approach, by
running the corresponding candidate over the test suite; in practice, results
can improve if positive examples get priority, but negative examples are
required to prevent over-generalization [30]. Scoring functions are typically
based on some version of balanced accuracy, sometimes taking the length
of the longest recognized fragment into account [88]. Our priority function
follows similar ideas.

Unlike in our grammar repair task, where generation of test suites from
candidate grammars and use of an oracle O to answer membership queries
on the generated sentences, are intrinsically incorporated in our main repair
loop, the GA-based algorithm by Crepinsek et al. [30] leave sentence gener-
ation from candidates only after the plausible candidate that parses all pos-
itive examples is returned to determine the need for further introduction
of negative examples. The eg-GRIDS system by Petasis et al. [123] ignores
sentence generation from candidates completely, but the authors use it as a
measure of quality on the output grammar variant that captures the posi-

Stellenbosch University https://scholar.sun.ac.za

6.5. GRAMMAR LEARNING 137

tive input training set. The system also does away with leveraging negative
evidence to avoid some overgeneralization; the minimum description length
(MDL) algorithm is rather employed that ensures "compact" learned gram-
mars with respect to encoded training examples.

Di Penta and Taneja [38] and Di Penta et al. [37] used GAs to learn the
well-separated extension of a programming language, starting from the full
grammar of the base language. Their inference approach, however, involves
an initial manual flagging of differences between the source grammar and
its dialect, then extracts sub-grammars from the source that reflect those dif-
ferences because earlier attempts to infer a complete general-purpose gram-
mar did not yield favourable results. We showed in our work [129] that our
approach can be used to capture the dialect of a language; we rely on fault
localization to automatically identify deviations between the input gram-
mar and its dialect, and we do not derive subsets of the input grammar.
However, we are aware that we may be addressing slightly different prob-
lems, and it remains an interesting and open question to see how our ap-
proach can be used to replace the blind rule selection in genetic grammar
learning methods.
Inductive grammar learning. Our work can be seen as grammatical infer-
ence, which has a long history (e.g., [143]) and has been widely addressed,
both in theory and in practice (see [31, 95, 136, 146] for overviews).

Our approach has the full test suite available with access to a member-
ship oracle. It therefore sits between Gold’s model of identification in the
limit [51], where observations are presented in sequence (and approaches
are often order-sensitive, e.g., [77]) and Angluin’s query model [11], where
the learner can ask the teacher membership and equivalence queries and
use the teacher’s response in guiding the learning process. However, since
we are given an initial grammar, we are solving a simpler problem than
learning the full grammar from scratch. We focus on learning from unstruc-
tured text (textual presentation) because we cannot use the grammar under
repair to construct parse tree skeletons (structural presentation), from which
only the labels need to be learned [41, 136].

Most complete learning algorithms work for regular languages only, where
all necessary properties (e.g., language equivalence) are decidable, but some
work carries over to restricted subclasses of context-free languages [64]. We
focus on heuristic approaches here.

Several systems such as Synapse [110, 111] or Gramin [134] iteratively
parse the positive tests using the current grammar; when an attempt fails,
they introduce a new rule to match this input. Synapse uses the nega-
tive presentation after each generalization to prevent overgeneralizations.
Gramin adds some heuristics to reduce the search space.

Glade [17] implements a two phase generate-and-test approach com-
prising a regular expression generalization (which introduces alternatives
and repetitions), followed by a CFG generalization (which introduces re-

Stellenbosch University https://scholar.sun.ac.za

138 CHAPTER 6. RELATED WORK

cursions); repetition and recursion introduction are somewhat similar to
Solomonoff’s approach [143]. Glade also generates specific check words
from the generalized locations to reject candidates (similar to our bigram-
based validation), but this relies on a teacher. Glade has been used to suc-
cessfully learn useful approximations of some production grammars and
represents the current state-of-the-art in CFG inference.

Kulkarni et al. [80] introduce and evaluate a non-deterministic grammar
learning tool, Arvada, that takes as input (like Glade) training examples S
and an oracle O that answers membership queries. From each input exam-
ple s ∈ S , the tool creates a flat tree (i.e., a tree with a root node with all
characters ci from s as leaf labels). The main learning loop of Arvada can
be summarized by two heuristic, generalization operations; (i) bubbling :
which introduces new non-terminals by assigning a new parent node (with
non-terminals as labels) to a sequence of sibling nodes; and (ii) merging :
which subsequently validates bubbles by checking whether two nodes ta
and tb can be commutatively substituted, i.e., if replacing ta by tb and vice
versa, does not produce words outside the target language. Arvada’s exper-
imental evaluation shows that it achieves higher recall (i.e., Arvada-mined
grammars generalize better to unseen tests) and better F1 scores than Glade.
This result led to one of the few and rare replication studies published in the
history of the PLDI conference [20]. The replication study disputes some of
the claims of the original paper such as "overly optimistic" F1 scores and
raises scalability concerns of Glade.

6.6 Error Recovery and Correction

Syntax error recovery and correction algorithms are invoked when the parser
detects syntax violations in the input, and try to enable parsing to con-
tinue by either manipulating the parse stack and/or modifying input to-
kens. There are several error recovery algorithms, and the discussions in
these studies [25, 35, 39] give a good overview of the field.

Note that error recovery algorithms address a different problem than our
work. Error recovery algorithms assume that the input is correct with re-
spect to the underlying correct grammar, while our work assumes the com-
plete opposite: we use the input test suite as specification to localize faults
in the grammar and automatically modify the grammar to fix these faults.

One of the most common error recovery algorithms that is easily imple-
mentable with almost any grammar is "panic mode" recovery [60]. The basic
idea of error recovery by the panic mode algorithm is to skip input tokens
until a synchronization token (e.g., a semicolon in Java or C) is reached or
inserted to enable parsing to continue. Our symbol deletion transformation
(see Definition 5.2.1 in Section 5.2) takes inspiration from panic mode error
recovery: starting at the designated position (within a rule), we delete sym-

Stellenbosch University https://scholar.sun.ac.za

6.6. ERROR RECOVERY AND CORRECTION 139

bols from the rule until this synchronizes the rule with the bad tokens, i.e.,
until the right set of the item after the deletion contains all bad tokens.

Another class of error recovery algorithms modify the underlying gram-
mars themselves. The grammars are augmented by introducing error pro-
ductions which allow appropriate handling and correction of syntax errors
[9, 45, 54]. However, practical adoption of these techniques can only be
found in the YACC system [68], where a special "error" token is used to
allow the parsing to continue when an error is detected. The grammar aug-
mented with these error productions can be ambiguous, just like our gram-
mar transformations, which may introduce some conflicts.

Starting with work by Fischer et al. [44], there have been approaches
that manipulate the states left on the LR parse stack at the time of syntax
error and find the minimum cost sequence of insertions and deletions on
input symbols to find a configuration that would enable parsing to con-
tinue. Corchuelo et al. [29] incorporate parsing elements in their algorithm,
they specifically introduce shift sequences in addition to insertion and dele-
tion repair sequences. Diekmann and Tratt [39] recently presented CPCT+,
an improved version of the algorithm by Corchuelo et al. [29] that recovers
from errors, returns multiple minimum cost repair sequences in less time
compared to the approach by Corchuelo et al. [29], and their experiments
show that it is less prone to the cascading error problem than the popular
panic mode error recovery mechanism. Our LR spectra collection described
in Section 3.4 also takes a parse stack as input and simply pulls the (par-
tially) applied rules or items from states left on the stack at time of syntax
error, hence we do not modify the contents of the parse stack. However,
the error recovery algorithms described here can modify the contents of the
stack (e.g, by shifting symbols) in order to find a configuration that enables
parsing to continue normally.

Summary of Related Work

Our discussion of related work shows that our work is inspired by elements
from a wide variety of well studied fields. We first draw related work from
spectrum-based fault localization for general software systems, from which
our fault localization approaches heavily borrow ideas from. The automatic
repair approach proposed in this thesis shares a lot in common with many
generate-and-validate program repair approaches: we use the same patch
selection strategies and define a patch validation function to compute the
fitness of each generated repair candidate. Our work can also be seen as
grammar learning, however, our repair approach solves a much simpler
problem because our input grammars are closer to the unknown target lan-
guage while grammar learning infers grammars from scratch. We also eval-
uate our approaches over test suites that satisfy different coverage criteria,

Stellenbosch University https://scholar.sun.ac.za

140 CHAPTER 6. RELATED WORK

and finally, we end our discussion with syntax error recovery mechanisms
because our illustration of the manual find-and-fix in Section 1.1, relies on
these syntax messages and recovery attempts from parsers.

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Context-free grammars (CFGs) are a widely used mechanism to concisely
specify the structure of complex objects, e.g., JSON objects, XML files, and
of course computer programs. In software engineering, CFGs are used in
testing, specifically in test-suite generation and fuzzing. However, in many
cases CFGs are not available, incomplete, or outdated.

Several approaches and techniques that regard grammars as proper soft-
ware artefacts address some of the engineering challenges in grammar de-
velopment. In this work, we also follow the view that grammars are proper
software artefacts. We demonstrate that they can also contain bugs, like any
other software. Testing, which remains the most widely used method for
software quality assurance in general, is also applicable to grammars, but it
does not give any further information about the location of bugs, and much
less about how to automatically fix them. We therefore develop and evalu-
ate new techniques to automatically localize and repair bugs in grammars.

Fault Localization. We described and evaluated the first method specifi-
cally aimed at finding faulty rules in a grammar. It uses spectrum-based
fault localization techniques that have been used successfully to identify
faulty program elements in software. Our key insight is that the same
framework applies to grammars with minimal changes. We only need to
replace the concept of "executed statements" by that of "used rules" and can
keep the remaining established framework in place.

We describe two variants of our spectrum-based fault localization method
that work at two different levels of granularity; a coarse-grained rule-level
localization that we use as a baseline and a more fine-grained item-level lo-
calization that localizes faults more precisely at the level of individual sym-
bols in a rule. We gave formal definitions for grammar spectra for both con-
figurations: rule spectra summarize which of the grammar rules have been
(partially) applied in an attempt to parse an input, and item spectra enable

141

Stellenbosch University https://scholar.sun.ac.za

142 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

us to determine which positions within the applied rules have been success-
fully processed and which await further processing; hence we only consider
symbols on the right side of these boundaries within flagged rules.

We showed for both fault localization approaches how grammar spectra
can be collected for LL and LR parsers and described how popular parser
generator tools such as ANTLR, JavaCC, and CUP can be extended in order
to collect these grammar spectra. We also described a "flipped" approach
where synthetic grammar spectra are constructed directly from test cases
derived from a grammar and used these to localize differences between the
grammar and the language accepted by the black box system.

Our evaluation showed that our method can identify grammar bugs
with a high precision. In a large fault seeding experiment, it ranked the
seeded faults within the top five rules in more than half of the cases and
pinpointed them (i.e., uniquely ranked them as most suspicious) in 10%–
30%. On average, it ranks the faulty rules within about 25% of all rules,
and within less than 15% for a very large test suite containing both posi-
tive and negative test cases. Our method pinpoints far fewer of the seeded
faults down to the exact symbol position, or even ranks them within the
top five positions, due to the larger number of possible locations and corre-
sponding larger ties (i.e., groups of equally suspicious locations). However,
a simple tie-breaking strategy that prefers the right-most position amongst
the rules in a tie proves remarkably effective: it typically ranks the seeded
faults within the top five positions in about 30%–60% of the cases, and pin-
points them in about 15%–40% of the cases. On average, it ranks the seeded
faults within about 10%–20% of all positions. The specialized symbol-level
localization also significantly outperforms a simplistic extension of the rule-
level localization, where all positions within a rule are given the same score.
We also showed that fault localization techniques based on synthetic spectra
work even better at identifying these seeded single faults. More specifically,
the faulty rule is uniquely localized in at least 40% of the cases and in about
85% of the cases the prediction is within the top five rules.

We were also able to identify deviations and faults in real world and
student grammars, which contain multiple, real faults. Finally, the flipped
version of our fault localization method found four locations where a large
production-quality SQLite grammar deviates from the language accepted
by the black-box SQLite system.

Automatic Grammar Repair. We have described the first approach to au-
tomatically repair bugs in context-free grammars. This approach alternates
over two key steps and gradually improves the grammar until it passes all
tests in a given test suite: (i) We use fine-grained spectrum-based fault lo-
calization to identify suspicious items (i.e., specific positions in rules) as
potential repair sites. (ii) We use small-scale transformations to patch the
grammar and formulate with each transformation explicit pre- and post-

Stellenbosch University https://scholar.sun.ac.za

7.2. FUTURE WORK DIRECTIONS 143

conditions that are necessary for it to improve the grammar. Both steps sig-
nificantly reduce the number of potential repair patches to be applied.We
further use a priority queue to keep improving the most promising candi-
date grammars. At the high level, our repair approach relies on two ba-
sic principles, the competent programmer hypothesis which assumes that the
grammars to be repaired are approximating the target language already suf-
ficiently well and Occam’s razor which expresses itself in the fact that the
repair uses the vocabulary and the structure of the original grammar, and
minimizes the number of applied patches.

We developed and evaluated two variants of our general grammar re-
pair approach: a passive repair approach, where we repair the grammar
against a fixed test suite specification, and an active repair approach which
leverages an input oracle O that answers membership queries for the test
suite enrichment, where we judiciously generate (positive and negative)
tests from the patch candidates, and use the oracle to obtain the expected
outcome.

We have prototyped the repair approach in the highly configurable gfixr
tool that uses the Ochiai spectrum-based fault localization technique to re-
pair faulty CUP grammars. This can be easily extended to use other fault
localization techniques, and the same underlying ideas are easily transfer-
able to other parser generator tools.

We successfully used gfixr’s passive and active repair approaches to re-
pair 33 grammars that contain multiple, real faults. The passive repair ap-
proach found patches in all but four cases where it returned partially re-
paired variants after 150 iterations. We showed that even these partially
repaired variants have improved in quality over their corresponding faulty
input grammars. We also showed that passive repair produces grammars
that generalize well to new unseen tests that were generated from oracle
grammars (i.e., the fixed grammars improved recall score). However, mi-
nor improvements in the achieved F1 scores by these patches induced by
passive repair showed that the approach sometimes produces patches that
over-generalize beyond the target language.

We developed and evaluated the active repair approach to address this
over-generalization. Active repair substantially improves over passive re-
pair and produced high quality patches that capture the original (human)
intent of the grammar. We showed that we achieve 100% F1 score in eight
grammars, 100% recall in ten cases and 100% precision in thirteen gram-
mars.

7.2 Future Work Directions

We discuss possible extensions that address some interesting open ques-
tions that arose during our experimental evaluation. These additional av-

Stellenbosch University https://scholar.sun.ac.za

144 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

enues for future work could make our approaches achieve even higher pre-
cision and generalize to more parsing technologies.

7.2.1 Stronger Oracles for Negative Tests

Currently, our handling of negative test may be too simplistic; we mark
negative tests as passed if the input grammar reports the syntax violations
and hence its observed output matches the expected boolean output. In
order to obtain precise negative grammar spectra, negative tests should be
considered passed if the input grammar returns the same error location as
the oracle. This requires us to implement a better oracle that tells us what
the location is. We could perhaps achieve this in two ways, (i) for the fault
seeding experiments we can simply run the golden parser and extract the
location from that error message, and (ii) a more general handling would be
to modify our negative test suite construction algorithms (see Section 2.3.3)
in order to generate test suites augmented with location information.

7.2.2 Multi-Rule Repair

The current version of gfixr iteratively generates repair candidates for each
identified repair site and validates each candidate against a test suite. This
automates the find and fix cycle we illustrated earlier in Chapter 1. This is
analogous to the popular "one-bug-at-a-time" (OBA) debugging technique.
However, in our experimental evaluation, we also observed that multiple
faults can sometimes be independently repaired in a single step. This is
easily observable in Tables 5.1 and 5.4 where the number of bugs revealed
by the test suites equal the number of iterations gfixr took to find the repair.

In automated program repair, such multi-line repair approaches have
been shown to improve scalability in tools like Angelix [107]. We plan to
extend gfixr to repair multiple rules in a single iteration. The starting point
would be to introduce a different patch selection strategy, and to analyse the
spectra in more detail, using a "multiple-bugs-at-a-time" (MBA) strategy in
order to achieve the required separation of faults.

7.2.3 Patch Priorities

Partial repairs using insertion or substitution patches can introduce multi-
ple mutated copies of the same base rule. We plan to clean up the fixed
grammar using grammar refactorings (e.g., introducing new non-terminals
for alternatives or common sub-sequences) [81, 167].

Some patch types are more general than others (e.g., list synthesis has
a wider scope than right recursion introduction) and some work better in
different contexts than others (e.g., non-terminal splitting patches only con-
sider a local context while push down list elements can be thought of global

Stellenbosch University https://scholar.sun.ac.za

7.3. FINAL REMARKS 145

patches). As future work, we plan to define some priority function over
the different patch types because we observed in our experiments that, for
example, list synthesis patches tend to over-generalize beyond the target
language more often than the right recursion introduction patches. The pri-
ority function should give preference to right recursion introduction to list
synthesis in cases like these.

7.2.4 Migration to Modern Compiler-Compiler Tools

Many bugs (especially by students) emerge at the interface between lexer
and parser, due to interactions between the lexer’s first and longest match
policies. Fixing such bugs is easy in principle (e.g., a new keyword can
be introduced through a substitution patch), but the automation is more
complex because lexer and parser need to be updated synchronously. We
plan to extend gfixr accordingly, or alternatively, use a scannerless parsing
approach [42].

We plan to extend gfixr to repair grammars for LL-parsers such as JavaCC
or ANTLR, and possibly even for generalized GLR or GLL parsers. Mov-
ing to a generalized parser generator is perhaps the most interesting fu-
ture work direction because from a theoretical and practical point of view,
it may be a difficult task to learn or migrate a grammar from one formal-
ism to another. The discussion of parsing restrictions in Section 5.7 also
motivates this move because coping with the restrictions that CUP places
on grammars significantly limits the style of grammar transformations we
could use.

7.3 Final Remarks

We have developed two automated approaches which identify faulty rules
in context-free grammars and repair the faults fully automatically, with lit-
tle to no human intervention. These techniques can have direct or indirect
impact and influence in other related fields; they can reduce costs and im-
prove the quality of new language development, specifically for domain-
specific languages that lack a large community of contributors. The auto-
mated methods proposed in this thesis can also influence and improve re-
search in the field of software testing, since many advanced methods (such
as fuzzing) require CFGs. The work proposed here leads to a novel iterative
generate-localize-repair approach for mining grammars that are practically
useful for grammar-based testing and other applications in software engi-
neering. This approach constructs an initial candidate CFG, then generates
test suites from the candidate, evaluates them via the teacher and uses its
feedback to localize and repair suspicious rules.

Stellenbosch University https://scholar.sun.ac.za

146 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

This research can also impact teaching of compiler engineering courses,
through automated feedback and grading tools, since the fault localization
approach proposed here can identify any differences in CFGs and propose
repairs to students.

Stellenbosch University https://scholar.sun.ac.za

Appendix A

CDRC Test Suite

The test suite TStest we use in the running example in Chapter 5 to illustrate
different types of grammar transformations.

1 program a begin boolean array a; relax end
2 program a begin boolean a, a, a; relax end
3 program a begin boolean a, a; relax end
4 program a begin boolean a; boolean a; relax end
5 program a begin boolean a; relax end
6 program a begin a() end
7 program a begin a(0) end
8 program a begin a(0, 0) end
9 program a begin a(0, 0, 0) end

10 program a begin a := array 0 end
11 program a begin a := 0 end
12 program a begin a[0] := 0 end
13 program a begin if 0 then leave end end
14 program a begin if 0 then relax else leave end end
15 program a begin if 0 then relax else relax end end
16 program a begin if 0 then relax elsif 0 then leave end end
17 program a begin if 0 then relax elsif 0 then relax elsif 0 then relax end end
18 program a begin if 0 then relax elsif 0 then relax end end
19 program a begin if 0 then relax end end
20 program a begin integer a; relax end
21 program a begin leave; a() end
22 program a begin leave; if 0 then relax end end
23 program a begin leave; leave; leave end
24 program a begin leave; leave end
25 program a begin leave; read a end
26 program a begin leave; while 0 do relax end end
27 program a begin leave; write "" end
28 program a begin leave end
29 program a begin read a[0] end
30 program a begin read a end
31 program a begin relax end
32 program a begin while 0 do leave end end
33 program a begin while 0 do relax end end
34 program a begin write(0) end
35 program a begin write - 0 end
36 program a begin write false end
37 program a begin write a() end
38 program a begin write a[0] end
39 program a begin write a end
40 program a begin write not(0) end
41 program a begin write not false end
42 program a begin write not a end
43 program a begin write not not 0 end
44 program a begin write not 0 end

147

Stellenbosch University https://scholar.sun.ac.za

148 APPENDIX A. CDRC TEST SUITE

45 program a begin write not true end
46 program a begin write 0 \# 0 end
47 program a begin write 0 \% 0 end
48 program a begin write 0 * (0) end
49 program a begin write 0 * false end
50 program a begin write 0 * a end
51 program a begin write 0 * not 0 end
52 program a begin write 0 * 0 * 0 end
53 program a begin write 0 * 0 end
54 program a begin write 0 * true end
55 program a begin write 0 + 0 + 0 end
56 program a begin write 0 + 0 end
57 program a begin write 0 - 0 end
58 program a begin write 0 / 0 end
59 program a begin write 0 < 0 end
60 program a begin write 0 <= 0 end
61 program a begin write 0 = 0 end
62 program a begin write 0 > 0 end
63 program a begin write 0 >= 0 end
64 program a begin write 0 and 0 end
65 program a begin write 0 end
66 program a begin write 0 or 0 end
67 program a begin write "" . 0 end
68 program a begin write "" . "" . "" end
69 program a begin write "" . "" end
70 program a begin write "" end
71 program a begin write true end
72 program a define a(boolean array a) begin relax end begin relax end
73 program a define a(boolean a) -> boolean a begin relax end begin relax end
74 program a define a(boolean a) -> integer a begin relax end begin relax end
75 program a define a(boolean a) begin relax end begin relax end
76 program a define a(boolean a) begin relax end define a(boolean a) begin relax end begin relax end
77 program a define a(boolean a, boolean a) begin relax end begin relax end
78 program a define a(boolean a, boolean a, boolean a) begin relax end begin relax end
79 program a define a(integer a) begin relax end begin relax end

Stellenbosch University https://scholar.sun.ac.za

List of References

[1] (1990). Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, pp. 1–84.

[2] (2014). CUP 0.11b.
Available at: http://www2.cs.tum.edu/projects/cup/

[3] (2020). JavaCC 7.0.5.
Available at: https://javacc.github.io/javacc/

[4] (2021). Sqlite.
Available at: https://sqlite.org

[5] Abreu, R. (2009). Spectrum-based Fault Localization in Embedded Software.
Ph.D. thesis, Delft University of Technology, Netherlands.
Available at: http://resolver.tudelft.nl/uuid:

78aa2510-acff-4acb-85ec-15852aa08e5c

[6] Abreu, R., Zoeteweij, P. and van Gemund, A.J.C. (2006). An evaluation of
similarity coefficients for software fault localization. In: 12th IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2006), 18-20 Decem-
ber, 2006, University of California, Riverside, USA, pp. 39–46. IEEE Computer
Society.
Available at: https://doi.org/10.1109/PRDC.2006.18

[7] Abreu, R., Zoeteweij, P. and van Gemund, A.J.C. (2009). Spectrum-based
multiple fault localization. In: ASE 2009, 24th IEEE/ACM International Con-
ference on Automated Software Engineering, Auckland, New Zealand, November
16-20, 2009, pp. 88–99. IEEE Computer Society.
Available at: https://doi.org/10.1109/ASE.2009.25

[8] Ahmad, H., Huang, Y. and Weimer, W. (2022). Cirfix: automatically repair-
ing defects in hardware design code. In: Falsafi, B., Ferdman, M., Lu, S. and
Wenisch, T.F. (eds.), ASPLOS ’22: 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, pp. 990–1003. ACM.
Available at: https://doi.org/10.1145/3503222.3507763

[9] Aho, A.V. and Peterson, T.G. (1972). A minimum distance error-correcting
parser for context-free languages. SIAM J. Comput., vol. 1, no. 4, pp. 305–312.
Available at: https://doi.org/10.1137/0201022

149

Stellenbosch University https://scholar.sun.ac.za

http://www2.cs.tum.edu/projects/cup/
https://javacc.github.io/javacc/
https://sqlite.org
http://resolver.tudelft.nl/uuid:78aa2510-acff-4acb-85ec-15852aa08e5c
http://resolver.tudelft.nl/uuid:78aa2510-acff-4acb-85ec-15852aa08e5c
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1145/3503222.3507763
https://doi.org/10.1137/0201022

150 LIST OF REFERENCES

[10] Aho, A.V., Sethi, R. and Ullman, J.D. (1986). Compilers: Principles, Techniques,
and Tools. Addison-Wesley series in computer science / World student series
edition. Addison-Wesley. ISBN 0-201-10088-6.
Available at: https://www.worldcat.org/oclc/12285707

[11] Angluin, D. (1987). Queries and concept learning. Mach. Learn., vol. 2, no. 4,
pp. 319–342.
Available at: https://doi.org/10.1007/BF00116828

[12] Arcuri, A. (2009). Automatic software generation and improvement through search
based techniques. Ph.D. thesis, University of Birmingham, UK.
Available at: http://etheses.bham.ac.uk/400/

[13] Arcuri, A. (2011). Evolutionary repair of faulty software. Appl. Soft Comput.,
vol. 11, no. 4, pp. 3494–3514.
Available at: https://doi.org/10.1016/j.asoc.2011.01.023

[14] Arcuri, A. and Yao, X. (2008). A novel co-evolutionary approach to automatic
software bug fixing. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation, CEC 2008, June 1-6, 2008, Hong Kong, China, pp. 162–168. IEEE.
Available at: https://doi.org/10.1109/CEC.2008.4630793

[15] Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A. and
Teuchert, D. (2019). NAUTILUS: fishing for deep bugs with grammars. In:
26th Annual Network and Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Society.
Available at: https://www.ndss-symposium.org/ndss-paper/

nautilus-fishing-for-deep-bugs-with-grammars/

[16] Barraball, C., Raselimo, M. and Fischer, B. (2020). An interactive feedback
system for grammar development (tool paper). In: Lämmel, R., Tratt, L. and
de Lara, J. (eds.), Proceedings of the 13th ACM SIGPLAN International Confer-
ence on Software Language Engineering, SLE 2020, Virtual Event, USA, November
16-17, 2020, pp. 101–107. ACM.
Available at: https://doi.org/10.1145/3426425.3426935

[17] Bastani, O., Sharma, R., Aiken, A. and Liang, P. (2017). Synthesizing program
input grammars. In: Cohen, A. and Vechev, M.T. (eds.), Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pp. 95–110. ACM.
Available at: https://doi.org/10.1145/3062341.3062349

[18] Basten, H.J.S. (2010). Tracking down the origins of ambiguity in context-free
grammars. In: Cavalcanti, A., Déharbe, D., Gaudel, M. and Woodcock, J.
(eds.), Theoretical Aspects of Computing - ICTAC 2010, 7th International Collo-
quium, Natal, Rio Grande do Norte, Brazil, September 1-3, 2010. Proceedings, vol.
6255 of Lecture Notes in Computer Science, pp. 76–90. Springer. ISBN 978-3-
642-14807-1.
Available at: https://doi.org/10.1007/978-3-642-14808-8_6

Stellenbosch University https://scholar.sun.ac.za

https://www.worldcat.org/oclc/12285707
https://doi.org/10.1007/BF00116828
http://etheses.bham.ac.uk/400/
https://doi.org/10.1016/j.asoc.2011.01.023
https://doi.org/10.1109/CEC.2008.4630793
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://doi.org/10.1145/3426425.3426935
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1007/978-3-642-14808-8_6

151

[19] Bastien, C., Czyzowicz, J., Fraczak, W. and Rytter, W. (2006). Prime normal
form and equivalence of simple grammars. Theor. Comput. Sci., vol. 363, no. 2,
pp. 124–134.
Available at: https://doi.org/10.1016/j.tcs.2006.07.021

[20] Bendrissou, B., Gopinath, R. and Zeller, A. (2022). "synthesizing input gram-
mars": a replication study. In: Jhala, R. and Dillig, I. (eds.), PLDI ’22: 43rd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, San Diego, CA, USA, June 13 - 17, 2022, pp. 260–268. ACM.
Available at: https://doi.org/10.1145/3519939.3523716

[21] Bird, D.L. and Munoz, C.U. (1983). Automatic generation of random self-
checking test cases. IBM Systems Journal, vol. 22, no. 3, pp. 229–245. ISSN
0018-8670.

[22] Brabrand, C., Giegerich, R. and Møller, A. (2010). Analyzing ambiguity of
context-free grammars. Sci. Comput. Program., vol. 75, no. 3, pp. 176–191.
Available at: https://doi.org/10.1016/j.scico.2009.11.002

[23] Cadar, C., Dunbar, D. and Engler, D.R. (2008). KLEE: unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In:
Draves, R. and van Renesse, R. (eds.), 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings, pp. 209–224. USENIX Association.
Available at: http://www.usenix.org/events/osdi08/tech/full_papers/

cadar/cadar.pdf

[24] Cantor, D.G. (1962). On the ambiguity problem of backus systems. J. ACM,
vol. 9, no. 4, pp. 477–479.
Available at: https://doi.org/10.1145/321138.321145

[25] Cerecke, C. (2003). Locally least-cost error repair in LR parsers. Ph.D. thesis.
Available at: http://dx.doi.org/10.26021/1600

[26] Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A. and Brewer, E.A. (2002). Pin-
point: Problem determination in large, dynamic internet services. In: 2002
International Conference on Dependable Systems and Networks (DSN 2002), 23-26
June 2002, Bethesda, MD, USA, Proceedings, pp. 595–604. IEEE Computer Soci-
ety.
Available at: https://doi.org/10.1109/DSN.2002.1029005

[27] Clun, D., van Heerden, P., Filieri, A. and Visser, W. (2020). Improving sym-
bolic automata learning with concolic execution. In: Wehrheim, H. and
Cabot, J. (eds.), Fundamental Approaches to Software Engineering - 23rd Inter-
national Conference, FASE 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020,
Proceedings, vol. 12076 of Lecture Notes in Computer Science, pp. 3–26. Springer.
Available at: https://doi.org/10.1007/978-3-030-45234-6_1

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1016/j.tcs.2006.07.021
https://doi.org/10.1145/3519939.3523716
https://doi.org/10.1016/j.scico.2009.11.002
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1145/321138.321145
http://dx.doi.org/10.26021/1600
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1007/978-3-030-45234-6_1

152 LIST OF REFERENCES

[28] Collofello, J.S. and Cousins, L. (1987). Towards automatic software fault loca-
tion through decision-to-decision path analysis. In: In Proceedings of the AFIP
1987 National Computer Conference, pp. 539 – 544.

[29] Corchuelo, R., Pérez, J.A., Cortés, A.R. and Toro, M. (2002). Repairing syntax
errors in LR parsers. ACM Trans. Program. Lang. Syst., vol. 24, no. 6, pp. 698–
710.
Available at: https://doi.org/10.1145/586088.586092

[30] Crepinsek, M., Mernik, M., Bryant, B.R., Javed, F. and Sprague, A.P. (2005).
Inferring context-free grammars for domain-specific languages. Electron.
Notes Theor. Comput. Sci., vol. 141, no. 4, pp. 99–116.
Available at: https://doi.org/10.1016/j.entcs.2005.02.055

[31] de la Higuera, C. (2010). Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press. ISBN 0521763169.

[32] de Souza, H.A., Chaim, M.L. and Kon, F. (2016). Spectrum-based software
fault localization: A survey of techniques, advances, and challenges. CoRR,
vol. abs/1607.04347. 1607.04347.
Available at: http://arxiv.org/abs/1607.04347

[33] Debroy, V. and Wong, W.E. (2010). Using mutation to automatically suggest
fixes for faulty programs. In: Third International Conference on Software Testing,
Verification and Validation, ICST 2010, Paris, France, April 7-9, 2010, pp. 65–74.
IEEE Computer Society.
Available at: https://doi.org/10.1109/ICST.2010.66

[34] Debroy, V. and Wong, W.E. (2011). On the equivalence of certain fault lo-
calization techniques. In: Proceedings of the 2011 ACM Symposium on Ap-
plied Computing, pp. 1457 – 1463. Association for Computing Machinery, New
York, NY, USA. ISBN 9781450301138.
Available at: https://doi.org/10.1145/1982185.1982498

[35] Degano, P. and Priami, C. (1995). Comparison of syntactic error handling in
LR parsers. Softw. Pract. Exp., vol. 25, no. 6, pp. 657–679.
Available at: https://doi.org/10.1002/spe.4380250606

[36] DeMillo, R.A., Lipton, R.J. and Sayward, F.G. (1978). Hints on test data selec-
tion: Help for the practicing programmer. Computer, vol. 11, no. 4, pp. 34–41.
Available at: https://doi.org/10.1109/C-M.1978.218136

[37] Di Penta, M., Lombardi, P., Taneja, K. and Troiano, L. (2008). Search-based
inference of dialect grammars. Soft Comput., vol. 12, no. 1, pp. 51–66.
Available at: https://doi.org/10.1007/s00500-007-0216-5

[38] Di Penta, M. and Taneja, K. (2005). Towards the automatic evolution of
reengineering tools. In: 9th European Conference on Software Maintenance and
Reengineering (CSMR 2005), 21-23 March 2005, Manchester, UK, Proceedings,

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/586088.586092
https://doi.org/10.1016/j.entcs.2005.02.055
1607.04347
http://arxiv.org/abs/1607.04347
https://doi.org/10.1109/ICST.2010.66
https://doi.org/10.1145/1982185.1982498
https://doi.org/10.1002/spe.4380250606
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1007/s00500-007-0216-5

153

pp. 241–244. IEEE Computer Society.
Available at: https://doi.org/10.1109/CSMR.2005.52

[39] Diekmann, L. and Tratt, L. (2020). Don’t panic! better, fewer, syntax errors
for LR parsers. In: Hirschfeld, R. and Pape, T. (eds.), 34th European Conference
on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020, Berlin,
Germany (Virtual Conference), vol. 166 of LIPIcs, pp. 6:1–6:32. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik.
Available at: https://doi.org/10.4230/LIPIcs.ECOOP.2020.6

[40] Dijkstra, E.W. (1972). The humble programmer. Commun. ACM, vol. 15,
no. 10, pp. 859–866.
Available at: https://doi.org/10.1145/355604.361591

[41] Drewes, F. and Högberg, J. (2003). Learning a regular tree language from a
teacher. In: Ésik, Z. and Fülöp, Z. (eds.), Developments in Language Theory, 7th
International Conference, DLT 2003, Szeged, Hungary, July 7-11, 2003, Proceed-
ings, vol. 2710 of Lecture Notes in Computer Science, pp. 279–291. Springer.
Available at: https://doi.org/10.1007/3-540-45007-6_22

[42] Economopoulos, G., Klint, P. and Vinju, J.J. (2009). Faster scannerless GLR
parsing. In: de Moor, O. and Schwartzbach, M.I. (eds.), Compiler Construc-
tion, 18th International Conference, CC 2009, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March
22-29, 2009. Proceedings, vol. 5501 of Lecture Notes in Computer Science, pp.
126–141. Springer.
Available at: https://doi.org/10.1007/978-3-642-00722-4_10

[43] Fischer, B., Lämmel, R. and Zaytsev, V. (2011). Comparison of context-free
grammars based on parsing generated test data. In: Sloane, A.M. and Aß-
mann, U. (eds.), Software Language Engineering - 4th International Conference,
SLE 2011, Braga, Portugal, July 3-4, 2011, Revised Selected Papers, vol. 6940 of
Lecture Notes in Computer Science, pp. 324–343. Springer.
Available at: https://doi.org/10.1007/978-3-642-28830-2_18

[44] Fischer, C.N., Dion, B. and Mauney, J. (1979). A locally least-cost lr-error
corrector.
Available at: http://digital.library.wisc.edu/1793/58168

[45] Fischer, C.N. and Mauney, J. (1980). On the role of error productions in syn-
tactic error correction. Comput. Lang., vol. 5, no. 3, pp. 131–139.
Available at: https://doi.org/10.1016/0096-0551(80)90006-5

[46] Ford, B. (2004). Parsing expression grammars: a recognition-based syntactic
foundation. In: Jones, N.D. and Leroy, X. (eds.), Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2004, Venice, Italy, January 14-16, 2004, pp. 111–122. ACM.
Available at: https://doi.org/10.1145/964001.964011

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1109/CSMR.2005.52
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://doi.org/10.1145/355604.361591
https://doi.org/10.1007/3-540-45007-6_22
https://doi.org/10.1007/978-3-642-00722-4_10
https://doi.org/10.1007/978-3-642-28830-2_18
http://digital.library.wisc.edu/1793/58168
https://doi.org/10.1016/0096-0551(80)90006-5
https://doi.org/10.1145/964001.964011

154 LIST OF REFERENCES

[47] Forrest, S., Nguyen, T., Weimer, W. and Le Goues, C. (2009). A genetic pro-
gramming approach to automated software repair. In: Rothlauf, F. (ed.), Ge-
netic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Mon-
treal, Québec, Canada, July 8-12, 2009, pp. 947–954. ACM.
Available at: https://doi.org/10.1145/1569901.1570031

[48] Gazzola, L., Micucci, D. and Mariani, L. (2019). Automatic software repair:
A survey. IEEE Transactions on Software Engineering, vol. 45, no. 1, pp. 34–67.

[49] Ghanbari, A., Benton, S. and Zhang, L. (2019). Practical program repair via
bytecode mutation. In: Zhang, D. and Møller, A. (eds.), Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019, Beijing, China, July 15-19, 2019, pp. 19–30. ACM.
Available at: https://doi.org/10.1145/3293882.3330559

[50] Gissurarson, M.P., Applis, L., Panichella, A., van Deursen, A. and Sands, D.
(2022). Propr: Property-based automatic program repair.

[51] Gold, E.M. (1967). Language identification in the limit. Inf. Control., vol. 10,
no. 5, pp. 447–474.
Available at: https://doi.org/10.1016/S0019-9958(67)91165-5

[52] Gopinath, D., Zaeem, R.N. and Khurshid, S. (2012). Improving the effective-
ness of spectra-based fault localization using specifications. In: Goedicke,
M., Menzies, T. and Saeki, M. (eds.), IEEE/ACM International Conference on
Automated Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012,
pp. 40–49. ACM.
Available at: https://doi.org/10.1145/2351676.2351683

[53] Gopinath, R., Jensen, C. and Groce, A. (2014). Mutations: How close are they
to real faults? In: 25th IEEE International Symposium on Software Reliability
Engineering, ISSRE 2014, Naples, Italy, November 3-6, 2014, pp. 189–200. IEEE
Computer Society.
Available at: https://doi.org/10.1109/ISSRE.2014.40

[54] Graham, S.L., Haley, C.B. and Joy, W.N. (1979). Practical LR error recovery. In:
Johnson, S.C. (ed.), Proceedings of the 1979 SIGPLAN Symposium on Compiler
Construction, Denver, Colorado, USA, August 6-10, 1979, pp. 168–175. ACM.
Available at: https://doi.org/10.1145/800229.806967

[55] Gu, Z., Barr, E.T., Hamilton, D.J. and Su, Z. (2010). Has the bug really been
fixed? In: Kramer, J., Bishop, J., Devanbu, P.T. and Uchitel, S. (eds.), Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pp. 55–64. ACM.
Available at: https://doi.org/10.1145/1806799.1806812

[56] Havrikov, N. and Zeller, A. (2019). Systematically covering input structure.
In: 34th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2019, San Diego, CA, USA, November 11-15, 2019, pp. 189–199. IEEE.
Available at: https://doi.org/10.1109/ASE.2019.00027

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1145/3293882.3330559
https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/10.1145/2351676.2351683
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1145/800229.806967
https://doi.org/10.1145/1806799.1806812
https://doi.org/10.1109/ASE.2019.00027

155

[57] Heiden, S., Grunske, L., Kehrer, T., Keller, F., van Hoorn, A., Filieri, A. and
Lo, D. (2019). An evaluation of pure spectrum-based fault localization tech-
niques for large-scale software systems. Softw. Pract. Exp., vol. 49, no. 8, pp.
1197–1224.
Available at: https://doi.org/10.1002/spe.2703

[58] Hodován, R., Kiss, Á. and Gyimóthy, T. (2018). Grammarinator: a grammar-
based open source fuzzer. In: Prasetya, W., Vos, T.E.J. and Getir, S. (eds.), Pro-
ceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST
Case Design, Selection, and Evaluation, A-TEST@SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 05, 2018, pp. 45–48. ACM.
Available at: https://doi.org/10.1145/3278186.3278193

[59] Hoffman, D., Ly-Gagnon, D., Strooper, P.A. and Wang, H. (2011). Grammar-
based test generation with yougen. Softw., Pract. Exper., vol. 41, no. 4, pp.
427–447.
Available at: https://doi.org/10.1002/spe.1017

[60] Holub, A.I. (1990). Compiler design in C. Prentice Hall. ISBN 978-0-13-155151-
0.

[61] Homer, W. and Schooler, R. (1989). Independent testing of compiler phases
using a test case generator. Softw., Pract. Exper., vol. 19, no. 1, pp. 53–62.
Available at: https://doi.org/10.1002/spe.4380190106

[62] Hua, J., Zhang, M., Wang, K. and Khurshid, S. (2018). Towards practical
program repair with on-demand candidate generation. In: Chaudron, M.,
Crnkovic, I., Chechik, M. and Harman, M. (eds.), Proceedings of the 40th In-
ternational Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pp. 12–23. ACM.
Available at: https://doi.org/10.1145/3180155.3180245

[63] Infrastructure, L.C. (2016). libfuzzer.
Available at: https://llvm.org/docs/LibFuzzer.html

[64] Isberner, M. (2015). Foundations of active automata learning: an algorithmic per-
spective. Ph.D. thesis, Technical University Dortmund, Germany.
Available at: http://hdl.handle.net/2003/34282

[65] Isradisaikul, C. and Myers, A.C. (2015). Finding counterexamples from pars-
ing conflicts. In: Grove, D. and Blackburn, S. (eds.), Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, Portland, OR, USA, June 15-17, 2015, pp. 555–564. ACM. ISBN 978-1-
4503-3468-6.
Available at: https://doi.org/10.1145/2737924.2737961

[66] Jain, R., Aggarwal, S.K., Jalote, P. and Biswas, S. (2004). An interactive
method for extracting grammar from programs. Softw. Pract. Exp., vol. 34,
no. 5, pp. 433–447.
Available at: https://doi.org/10.1002/spe.568

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1002/spe.2703
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1002/spe.1017
https://doi.org/10.1002/spe.4380190106
https://doi.org/10.1145/3180155.3180245
https://llvm.org/docs/LibFuzzer.html
http://hdl.handle.net/2003/34282
https://doi.org/10.1145/2737924.2737961
https://doi.org/10.1002/spe.568

156 LIST OF REFERENCES

[67] Ji, T., Chen, L., Mao, X. and Yi, X. (2016). Automated program repair by
using similar code containing fix ingredients. In: 40th IEEE Annual Computer
Software and Applications Conference, COMPSAC 2016, Atlanta, GA, USA, June
10-14, 2016, pp. 197–202. IEEE Computer Society.
Available at: https://doi.org/10.1109/COMPSAC.2016.69

[68] Johnson, S. (1975). Yacc.
Available at: http://dinosaur.compilertools.net/yacc/

[69] Jones, J.A. and Harrold, M.J. (2005). Empirical evaluation of the tarantula
automatic fault-localization technique. In: Redmiles, D.F., Ellman, T. and
Zisman, A. (eds.), 20th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2005), November 7-11, 2005, Long Beach, CA, USA, pp.
273–282. ACM.
Available at: https://doi.org/10.1145/1101908.1101949

[70] Jones, J.A., Harrold, M.J. and Stasko, J.T. (2002). Visualization of test infor-
mation to assist fault localization. In: Tracz, W., Young, M. and Magee, J.
(eds.), Proceedings of the 24th International Conference on Software Engineering,
ICSE 2002, 19-25 May 2002, Orlando, Florida, USA, pp. 467–477. ACM.
Available at: https://doi.org/10.1145/581339.581397

[71] Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R. and Fraser, G.
(2014). Are mutants a valid substitute for real faults in software testing? In:
Cheung, S., Orso, A. and Storey, M.D. (eds.), Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014, pp. 654–665. ACM.
Available at: https://doi.org/10.1145/2635868.2635929

[72] Ke, Y., Stolee, K.T., Le Goues, C. and Brun, Y. (2015). Repairing programs
with semantic code search (T). In: Cohen, M.B., Grunske, L. and Whalen,
M. (eds.), 30th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pp. 295–306. IEEE
Computer Society.
Available at: https://doi.org/10.1109/ASE.2015.60

[73] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M. and Irwin, J. (1997). Aspect-oriented programming. In: Akşit, M. and
Matsuoka, S. (eds.), ECOOP’97 — Object-Oriented Programming, pp. 220–242.
Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-69127-3.

[74] Kiers, B. (2016). ANTLR4 grammar for SQLite 3.8.x.
Available at: https://github.com/bkiers/sqlite-parser

[75] Kim, D., Nam, J., Song, J. and Kim, S. (2013). Automatic patch generation
learned from human-written patches. In: Notkin, D., Cheng, B.H.C. and
Pohl, K. (eds.), 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pp. 802–811. IEEE Computer Soci-
ety.
Available at: https://doi.org/10.1109/ICSE.2013.6606626

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1109/COMPSAC.2016.69
http://dinosaur.compilertools.net/yacc/
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/ASE.2015.60
https://github.com/bkiers/sqlite-parser
https://doi.org/10.1109/ICSE.2013.6606626

157

[76] Klint, P., Lämmel, R. and Verhoef, C. (2005). Toward an engineering disci-
pline for grammarware. ACM Trans. Softw. Eng. Methodol., vol. 14, no. 3, pp.
331–380.
Available at: https://doi.org/10.1145/1072997.1073000

[77] Knobe, B. and Knobe, K. (1976). A method for inferring context-free gram-
mars. Inf. Control., vol. 31, no. 2, pp. 129–146.
Available at: https://doi.org/10.1016/S0019-9958(76)80003-4

[78] Korenjak, A.J. and Hopcroft, J.E. (1966). Simple deterministic languages. In:
7th Annual Symposium on Switching and Automata Theory, Berkeley, California,
USA, October 23-25, 1966, pp. 36–46. IEEE Computer Society.
Available at: https://doi.org/10.1109/SWAT.1966.22

[79] Koyuncu, A., Liu, K., Bissyandé, T.F., Kim, D., Klein, J., Monperrus, M. and
Traon, Y.L. (2020). Fixminer: Mining relevant fix patterns for automated pro-
gram repair. Empir. Softw. Eng., vol. 25, no. 3, pp. 1980–2024.
Available at: https://doi.org/10.1007/s10664-019-09780-z

[80] Kulkarni, N., Lemieux, C. and Sen, K. (2021). Learning highly recursive input
grammars. In: 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, pp. 456–
467. IEEE.
Available at: https://doi.org/10.1109/ASE51524.2021.9678879

[81] Lämmel, R. (2001). Grammar adaptation. In: Oliveira, J.N. and Zave, P.
(eds.), FME 2001: Formal Methods for Increasing Software Productivity, Inter-
national Symposium of Formal Methods Europe, Berlin, Germany, March 12-16,
2001, Proceedings, vol. 2021 of Lecture Notes in Computer Science, pp. 550–570.
Springer.
Available at: https://doi.org/10.1007/3-540-45251-6_32

[82] Lämmel, R. (2001). Grammar testing. In: Hußmann, H. (ed.), Fundamental Ap-
proaches to Software Engineering, 4th International Conference, FASE 2001 Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2001 Genova, Italy, April 2-6, 2001, Proceedings, vol. 2029 of Lecture Notes in
Computer Science, pp. 201–216. Springer.
Available at: https://doi.org/10.1007/3-540-45314-8_15

[83] Lämmel, R. and Schulte, W. (2006). Controllable combinatorial coverage in
grammar-based testing. In: Uyar, M.Ü., Duale, A.Y. and Fecko, M.A. (eds.),
Testing of Communicating Systems, 18th IFIP TC6/WG6.1 International Confer-
ence, TestCom 2006, New York, NY, USA, May 16-18, 2006, Proceedings, vol.
3964 of Lecture Notes in Computer Science, pp. 19–38. Springer.
Available at: https://doi.org/10.1007/11754008_2

[84] Lämmel, R. and Verhoef, C. (2001). Semi-automatic grammar recovery. Softw.
Pract. Exp., vol. 31, no. 15, pp. 1395–1438.
Available at: https://doi.org/10.1002/spe.423

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/1072997.1073000
https://doi.org/10.1016/S0019-9958(76)80003-4
https://doi.org/10.1109/SWAT.1966.22
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1007/3-540-45251-6_32
https://doi.org/10.1007/3-540-45314-8_15
https://doi.org/10.1007/11754008_2
https://doi.org/10.1002/spe.423

158 LIST OF REFERENCES

[85] Lämmel, R. and Zaytsev, V. (2009). An introduction to grammar convergence.
In: Leuschel, M. and Wehrheim, H. (eds.), Integrated Formal Methods, 7th Inter-
national Conference, IFM 2009, Düsseldorf, Germany, February 16-19, 2009. Pro-
ceedings, vol. 5423 of Lecture Notes in Computer Science, pp. 246–260. Springer.
Available at: https://doi.org/10.1007/978-3-642-00255-7_17

[86] Lämmel, R. and Zaytsev, V. (2009). Recovering grammar relationships for the
java language specification. In: Ninth IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2009, Edmonton, Alberta, Canada,
September 20-21, 2009, pp. 178–186. IEEE Computer Society.
Available at: https://doi.org/10.1109/SCAM.2009.29

[87] Lämmel, R. and Zaytsev, V. (2011). Recovering grammar relationships for the
java language specification. Softw. Qual. J., vol. 19, no. 2, pp. 333–378.
Available at: https://doi.org/10.1007/s11219-010-9116-5

[88] Lankhorst, M.M. (1994). Grammatical inference with a genetic algorithm. In:
Dekker, L., Smit, W. and Zuidervaart, J.C. (eds.), Massively Parallel Process-
ing Applications and Develompent, Proceedings of the 1994 EUROSIM Conference
on Massively Parallel Processing Applications and Develompent, 21-23 June 1994,
Delft, The Netherlands, pp. 423–430. Elsevier.

[89] Le, T.B., Thung, F. and Lo, D. (2013). Theory and practice, do they match?
A case with spectrum-based fault localization. In: 2013 IEEE International
Conference on Software Maintenance, Eindhoven, The Netherlands, September 22-
28, 2013, pp. 380–383. IEEE Computer Society.
Available at: https://doi.org/10.1109/ICSM.2013.52

[90] Le, X.D., Chu, D., Lo, D., Le Goues, C. and Visser, W. (2017). JFIX: semantics-
based repair of java programs via symbolic pathfinder. In: Bultan, T. and
Sen, K. (eds.), Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pp.
376–379. ACM.
Available at: https://doi.org/10.1145/3092703.3098225

[91] Le, X.D., Chu, D., Lo, D., Le Goues, C. and Visser, W. (2017). S3: syntax-
and semantic-guided repair synthesis via programming by examples. In:
Bodden, E., Schäfer, W., van Deursen, A. and Zisman, A. (eds.), Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, pp. 593–604. ACM.
Available at: https://doi.org/10.1145/3106237.3106309

[92] Le, X.D., Thung, F., Lo, D. and Le Goues, C. (2018). Overfitting in semantics-
based automated program repair. In: Chaudron, M., Crnkovic, I., Chechik,
M. and Harman, M. (eds.), Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
p. 163. ACM.
Available at: https://doi.org/10.1145/3180155.3182536

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1007/978-3-642-00255-7_17
https://doi.org/10.1109/SCAM.2009.29
https://doi.org/10.1007/s11219-010-9116-5
https://doi.org/10.1109/ICSM.2013.52
https://doi.org/10.1145/3092703.3098225
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3180155.3182536

159

[93] Le Goues, C., Forrest, S. and Weimer, W. (2013). Current challenges in auto-
matic software repair. Softw. Qual. J., vol. 21, no. 3, pp. 421–443.
Available at: https://doi.org/10.1007/s11219-013-9208-0

[94] Le Goues, C., Nguyen, T., Forrest, S. and Weimer, W. (2012). Genprog: A
generic method for automatic software repair. IEEE Trans. Software Eng.,
vol. 38, no. 1, pp. 54–72.
Available at: https://doi.org/10.1109/TSE.2011.104

[95] Lee, L. (1996). Learning of context-free languages: A survey of the litera-
ture. Tech. Rep. Computer Science Group Technical Report TR-12-96, Har-
vard University.

[96] Liu, K., Koyuncu, A., Bissyandé, T.F., Kim, D., Klein, J. and Traon, Y.L. (2019).
You cannot fix what you cannot find! an investigation of fault localization
bias in benchmarking automated program repair systems. In: 12th IEEE Con-
ference on Software Testing, Validation and Verification, ICST 2019, Xi’an, China,
April 22-27, 2019, pp. 102–113. IEEE.
Available at: https://doi.org/10.1109/ICST.2019.00020

[97] Liu, K., Koyuncu, A., Kim, D. and Bissyandé, T.F. (2019). Tbar: revisiting
template-based automated program repair. In: Zhang, D. and Møller, A.
(eds.), Proceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019, pp. 31–
42. ACM.
Available at: https://doi.org/10.1145/3293882.3330577

[98] Liu, X. and Zhong, H. (2018). Mining stackoverflow for program repair. In:
Oliveto, R., Penta, M.D. and Shepherd, D.C. (eds.), 25th International Con-
ference on Software Analysis, Evolution and Reengineering, SANER 2018, Cam-
pobasso, Italy, March 20-23, 2018, pp. 118–129. IEEE Computer Society.
Available at: https://doi.org/10.1109/SANER.2018.8330202

[99] Madhavan, R., Mayer, M., Gulwani, S. and Kuncak, V. (2015). Automating
grammar comparison. In: Aldrich, J. and Eugster, P. (eds.), Proceedings of
the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH
2015, Pittsburgh, PA, USA, October 25-30, 2015, pp. 183–200. ACM.
Available at: https://doi.org/10.1145/2814270.2814304

[100] Malloy, B.A. and Power, J.F. (2001). An interpretation of Purdom’s algorithm
for automatic generation of test cases. In: 1st ACIS Annual International Con-
ference on Computer and Information Science.
Available at: http://eprints.maynoothuniversity.ie/6434/

[101] Martinez, M., Durieux, T., Sommerard, R., Xuan, J. and Monperrus, M.
(2018). Automatic repair of real bugs in java: A large-scale experiment on
the defects4j dataset. CoRR, vol. abs/1811.02429. 1811.02429.
Available at: http://arxiv.org/abs/1811.02429

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1109/SANER.2018.8330202
https://doi.org/10.1145/2814270.2814304
http://eprints.maynoothuniversity.ie/6434/
1811.02429
http://arxiv.org/abs/1811.02429

160 LIST OF REFERENCES

[102] Martinez, M. and Monperrus, M. (2016). ASTOR: a program repair library
for java (demo). In: Zeller, A. and Roychoudhury, A. (eds.), Proceedings of
the 25th International Symposium on Software Testing and Analysis, ISSTA 2016,
Saarbrücken, Germany, July 18-20, 2016, pp. 441–444. ACM.
Available at: https://doi.org/10.1145/2931037.2948705

[103] Martinez, M. and Monperrus, M. (2018). Ultra-large repair search space with
automatically mined templates: The cardumen mode of astor. In: Colanzi,
T.E. and McMinn, P. (eds.), Search-Based Software Engineering - 10th Interna-
tional Symposium, SSBSE 2018, Montpellier, France, September 8-9, 2018, Pro-
ceedings, vol. 11036 of Lecture Notes in Computer Science, pp. 65–86. Springer.
Available at: https://doi.org/10.1007/978-3-319-99241-9_3

[104] Maurer, P.M. (1990). Generating test data with enhanced context-free gram-
mars. IEEE Software, vol. 7, no. 4, pp. 50–55.
Available at: https://doi.org/10.1109/52.56422

[105] Maurer, P.M. (1992). The design and implementation of a grammar-based
data generator. Softw., Pract. Exper., vol. 22, no. 3, pp. 223–244.
Available at: https://doi.org/10.1002/spe.4380220303

[106] McKeeman, W.M. (1998). Differential testing for software. Digit. Tech. J.,
vol. 10, no. 1, pp. 100–107.
Available at: http://www.hpl.hp.com/hpjournal/dtj/vol10num1/

vol10num1art9.pdf

[107] Mechtaev, S., Yi, J. and Roychoudhury, A. (2016). Angelix: scalable multiline
program patch synthesis via symbolic analysis. In: Dillon, L.K., Visser, W.
and Williams, L.A. (eds.), Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pp. 691–
701. ACM.
Available at: https://doi.org/10.1145/2884781.2884807

[108] Monperrus, M. (2018). Automatic software repair: A bibliography. ACM
Comput. Surv., vol. 51, no. 1, pp. 17:1–17:24.
Available at: https://doi.org/10.1145/3105906

[109] Naish, L., Lee, H.J. and Ramamohanarao, K. (2011). A model for spectra-
based software diagnosis. ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
pp. 11:1–11:32.
Available at: https://doi.org/10.1145/2000791.2000795

[110] Nakamura, K. (2006). Incremental learning of context free grammars by
bridging rule generation and search for semi-optimum rule sets. In: Sakak-
ibara, Y., Kobayashi, S., Sato, K., Nishino, T. and Tomita, E. (eds.), Grammat-
ical Inference: Algorithms and Applications, 8th International Colloquium, ICGI
2006, Tokyo, Japan, September 20-22, 2006, Proceedings, vol. 4201 of Lecture Notes
in Computer Science, pp. 72–83. Springer.
Available at: https://doi.org/10.1007/11872436_7

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1007/978-3-319-99241-9_3
https://doi.org/10.1109/52.56422
https://doi.org/10.1002/spe.4380220303
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/3105906
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1007/11872436_7

161

[111] Nakamura, K. and Ishiwata, T. (2000). Synthesizing context free grammars
from sample strings based on inductive CYK algorithm. In: Oliveira, A.L.
(ed.), Grammatical Inference: Algorithms and Applications, 5th International Col-
loquium, ICGI 2000, Lisbon, Portugal, September 11-13, 2000, Proceedings, vol.
1891 of Lecture Notes in Computer Science, pp. 186–195. Springer.
Available at: https://doi.org/10.1007/978-3-540-45257-7_15

[112] Neelofar, Naish, L. and Ramamohanarao, K. (2018). Spectral-based fault lo-
calization using hyperbolic function. Softw. Pract. Exp., vol. 48, no. 3, pp.
641–664.
Available at: https://doi.org/10.1002/spe.2527

[113] Nguyen, H.D.T., Qi, D., Roychoudhury, A. and Chandra, S. (2013). Semfix:
program repair via semantic analysis. In: Notkin, D., Cheng, B.H.C. and
Pohl, K. (eds.), 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pp. 772–781. IEEE Computer Soci-
ety.
Available at: https://doi.org/10.1109/ICSE.2013.6606623

[114] Nijholt, A. (1982). The equivalence problem for LL- and lr-regular grammars.
J. Comput. Syst. Sci., vol. 24, no. 2, pp. 149–161.
Available at: https://doi.org/10.1016/0022-0000(82)90044-7

[115] Ochiai, A. (1957). Zoogeographical studies on the soleoid fishes found in
japan and its neighhouring regions-ii. Bulletin of the Japanese Society of Scien-
tific Fisheries, vol. 22, no. 9, pp. 526–530.

[116] Olshansky, T. and Pnueli, A. (1977). A direct algorithm for checking equiva-
lence of ll(k) grammars. Theor. Comput. Sci., vol. 4, no. 3, pp. 321–349.
Available at: https://doi.org/10.1016/0304-3975(77)90016-0

[117] Page, L., Brin, S., Motwani, R. and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. Tech. Rep., Stanford InfoLab.

[118] Parr, T. (1990). Antlr.
Available at: https://www.antlr.org/download/antlr-4.10.1-complete.

jar

[119] Parr, T. and Fisher, K. (2011). Ll(*): the foundation of the ANTLR parser
generator. In: Hall, M.W. and Padua, D.A. (eds.), Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pp. 425–436. ACM.
Available at: https://doi.org/10.1145/1993498.1993548

[120] Parr, T., Harwell, S. and Fisher, K. (2014). Adaptive ll(*) parsing: the power
of dynamic analysis. In: Black, A.P. and Millstein, T.D. (eds.), Proceedings of
the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR,
USA, October 20-24, 2014, pp. 579–598. ACM.
Available at: https://doi.org/10.1145/2660193.2660202

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1007/978-3-540-45257-7_15
https://doi.org/10.1002/spe.2527
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1016/0022-0000(82)90044-7
https://doi.org/10.1016/0304-3975(77)90016-0
https://www.antlr.org/download/antlr-4.10.1-complete.jar
https://www.antlr.org/download/antlr-4.10.1-complete.jar
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/2660193.2660202

162 LIST OF REFERENCES

[121] Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C. and
Rungta, N. (2013). Symbolic pathfinder: integrating symbolic execution with
model checking for java bytecode analysis. Autom. Softw. Eng., vol. 20, no. 3,
pp. 391–425.
Available at: https://doi.org/10.1007/s10515-013-0122-2

[122] Payne, A.J. (1978 January). A formalised technique for expressing compiler
exercisers. SIGPLAN Not., vol. 13, no. 1, pp. 59–69. ISSN 0362-1340.
Available at: http://doi.acm.org/10.1145/953428.953435

[123] Petasis, G., Paliouras, G., Spyropoulos, C.D. and Halatsis, C. (2004). eg-
grids: Context-free grammatical inference from positive examples using ge-
netic search. In: Paliouras, G. and Sakakibara, Y. (eds.), Grammatical Inference:
Algorithms and Applications, 7th International Colloquium, ICGI 2004, Athens,
Greece, October 11-13, 2004, Proceedings, vol. 3264 of Lecture Notes in Computer
Science, pp. 223–234. Springer.
Available at: https://doi.org/10.1007/978-3-540-30195-0_20

[124] Purdom, P. (1972). A sentence generator for testing parsers. BIT, pp. 366–375.

[125] Qi, Y., Mao, X. and Lei, Y. (2013). Efficient automated program repair through
fault-recorded testing prioritization. In: 2013 IEEE International Conference on
Software Maintenance, Eindhoven, The Netherlands, September 22-28, 2013, pp.
180–189. IEEE Computer Society.
Available at: https://doi.org/10.1109/ICSM.2013.29

[126] Qi, Y., Mao, X., Lei, Y., Dai, Z. and Wang, C. (2014). The strength of random
search on automated program repair. In: Jalote, P., Briand, L.C. and van der
Hoek, A. (eds.), 36th International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, pp. 254–265. ACM.
Available at: https://doi.org/10.1145/2568225.2568254

[127] Qi, Z., Long, F., Achour, S. and Rinard, M.C. (2015). An analysis of patch
plausibility and correctness for generate-and-validate patch generation sys-
tems. In: Young, M. and Xie, T. (eds.), Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015, pp. 24–36. ACM.
Available at: https://doi.org/10.1145/2771783.2771791

[128] Raselimo, M. and Fischer, B. (2019). Spectrum-based fault localization for
context-free grammars. In: Nierstrasz, O., Gray, J. and d. S. Oliveira, B.C.
(eds.), Proceedings of the 12th ACM SIGPLAN International Conference on Soft-
ware Language Engineering, SLE 2019, Athens, Greece, October 20-22, 2019, pp.
15–28. ACM.
Available at: https://doi.org/10.1145/3357766.3359538

[129] Raselimo, M. and Fischer, B. (2021). Automatic grammar repair. In: Visser,
E., Kolovos, D.S. and Söderberg, E. (eds.), SLE ’21: 14th ACM SIGPLAN Inter-
national Conference on Software Language Engineering, Chicago, IL, USA, October

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1007/s10515-013-0122-2
http://doi.acm.org/10.1145/953428.953435
https://doi.org/10.1007/978-3-540-30195-0_20
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/3357766.3359538

163

17 - 18, 2021, pp. 126–142. ACM.
Available at: https://doi.org/10.1145/3486608.3486910

[130] Raselimo, M., Taljaard, J. and Fischer, B. (2019). Breaking parsers: mutation-
based generation of programs with guaranteed syntax errors. In: Nierstrasz,
O., Gray, J. and d. S. Oliveira, B.C. (eds.), Proceedings of the 12th ACM SIG-
PLAN International Conference on Software Language Engineering, SLE 2019,
Athens, Greece, October 20-22, 2019, pp. 83–87. ACM.
Available at: https://doi.org/10.1145/3357766.3359542

[131] Rossouw, C. and Fischer, B. (2020). Test case generation from context-free
grammars using generalized traversal of lr-automata. In: Lämmel, R., Tratt,
L. and de Lara, J. (eds.), Proceedings of the 13th ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2020, Virtual Event, USA,
November 16-17, 2020, pp. 133–139. ACM.
Available at: https://doi.org/10.1145/3426425.3426938

[132] Rossouw, C. and Fischer, B. (2021). Vision: bias in systematic grammar-based
test suite construction algorithms. In: Visser, E., Kolovos, D.S. and Söderberg,
E. (eds.), SLE ’21: 14th ACM SIGPLAN International Conference on Software
Language Engineering, Chicago, IL, USA, October 17 - 18, 2021, pp. 143–149.
ACM.
Available at: https://doi.org/10.1145/3486608.3486902

[133] Roychoudhury, A. (2016). Semfix and beyond: semantic techniques for pro-
gram repair. In: Naik, R., Medicherla, R.K. and Banerjee, A. (eds.), Proceedings
of the International Workshop on Formal Methods for Analysis of Business Systems,
ForMABS@ASE 2016, Singapore, Singapore, September 4, 2016, p. 2. ACM.
Available at: https://doi.org/10.1145/2975941.2990288

[134] Saha, D. and Narula, V. (2011). Gramin: a system for incremental learning of
programming language grammars. In: Bahulkar, A., Kesavasamy, K., Prab-
hakar, T.V. and Shroff, G. (eds.), Proceeding of the 4th Annual India Software
Engineering Conference, ISEC 2011, Thiruvananthapuram, Kerala, India, February
24-27, 2011, pp. 185–194. ACM.
Available at: https://doi.org/10.1145/1953355.1953380

[135] Saha, R.K., Lyu, Y., Yoshida, H. and Prasad, M.R. (2017). ELIXIR: effective
object oriented program repair. In: Rosu, G., Penta, M.D. and Nguyen, T.N.
(eds.), Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, pp. 648–659. IEEE Computer Society.
Available at: https://doi.org/10.1109/ASE.2017.8115675

[136] Sakakibara, Y. (1997). Recent advances of grammatical inference. Theor. Com-
put. Sci., vol. 185, no. 1, pp. 15–45.
Available at: https://doi.org/10.1016/S0304-3975(97)00014-5

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/3486608.3486910
https://doi.org/10.1145/3357766.3359542
https://doi.org/10.1145/3426425.3426938
https://doi.org/10.1145/3486608.3486902
https://doi.org/10.1145/2975941.2990288
https://doi.org/10.1145/1953355.1953380
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1016/S0304-3975(97)00014-5

164 LIST OF REFERENCES

[137] Santelices, R.A., Jones, J.A., Yu, Y. and Harrold, M.J. (2009). Lightweight
fault-localization using multiple coverage types. In: 31st International Confer-
ence on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings, pp. 56–66. IEEE.
Available at: https://doi.org/10.1109/ICSE.2009.5070508

[138] Schmitz, S. (2007). Conservative ambiguity detection in context-free gram-
mars. In: Arge, L., Cachin, C., Jurdzinski, T. and Tarlecki, A. (eds.), Automata,
Languages and Programming, 34th International Colloquium, ICALP 2007, Wro-
claw, Poland, July 9-13, 2007, Proceedings, vol. 4596 of Lecture Notes in Computer
Science, pp. 692–703. Springer. ISBN 978-3-540-73419-2.
Available at: https://doi.org/10.1007/978-3-540-73420-8_60

[139] Schmitz, S. (2008). An experimental ambiguity detection tool. Electr. Notes
Theor. Comput. Sci., vol. 203, no. 2, pp. 69–84.
Available at: https://doi.org/10.1016/j.entcs.2008.03.045

[140] Schröer, F.W. (2001). Amber, an ambiguity checker for context-free gram-
mars.
Available at: http://accent.compilertools.net/Amber.html

[141] Slutz, D.R. (1998). Massive stochastic testing of SQL. In: Gupta, A., Shmueli,
O. and Widom, J. (eds.), VLDB’98, Proceedings of 24rd International Conference
on Very Large Data Bases, August 24-27, 1998, New York City, New York, USA,
pp. 618–622. Morgan Kaufmann.
Available at: http://www.vldb.org/conf/1998/p618.pdf

[142] Smith, P. (2017). Hyacc.
Available at: http://hyacc.sourceforge.net/

[143] Solomonoff, R.J. (1959). A new method for discovering the grammars of
phrase structure languages. In: Information Processing, Proceedings of the 1st
International Conference on Information Processing, UNESCO, Paris 15-20 June
1959, pp. 285–289. UNESCO (Paris).

[144] Sommerville, I. (2010). Software Engineering (Ninth Edition). Pearson.

[145] Steimann, F., Frenkel, M. and Abreu, R. (2013). Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault loca-
tors. In: Pezzè, M. and Harman, M. (eds.), International Symposium on Software
Testing and Analysis, ISSTA ’13, Lugano, Switzerland, July 15-20, 2013, pp. 314–
324. ACM.
Available at: https://doi.org/10.1145/2483760.2483767

[146] Stevenson, A. and Cordy, J.R. (2014). A survey of grammatical inference in
software engineering. Sci. Comput. Program., vol. 96, pp. 444–459.
Available at: https://doi.org/10.1016/j.scico.2014.05.008

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1109/ICSE.2009.5070508
https://doi.org/10.1007/978-3-540-73420-8_60
https://doi.org/10.1016/j.entcs.2008.03.045
http://accent.compilertools.net/Amber.html
http://www.vldb.org/conf/1998/p618.pdf
http://hyacc.sourceforge.net/
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1016/j.scico.2014.05.008

165

[147] Stijlaart, M. and Zaytsev, V. (2017). Towards a taxonomy of grammar smells.
In: Combemale, B., Mernik, M. and Rumpe, B. (eds.), Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language Engineering, SLE
2017, Vancouver, BC, Canada, October 23-24, 2017, pp. 43–54. ACM.
Available at: https://doi.org/10.1145/3136014.3136035

[148] Stumptner, M. and Wotawa, F. (1996). Model-based program debugging and
repair. In: Tanaka, T., Ohsuga, S. and Ali, M. (eds.), Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, Proceedings of the Ninth
International Conference, Fukuoka, Japan, June 4-7, 1996, pp. 155–160. Gordon
and Breach Science Publishers.

[149] Taneja, K., Xie, T., Tillmann, N., de Halleux, J. and Schulte, W. (2009). Guided
path exploration for regression test generation. In: 31st International Confer-
ence on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Companion Volume, pp. 311–314. IEEE.
Available at: https://doi.org/10.1109/ICSE-COMPANION.2009.5071009

[150] van Heerden, P., Raselimo, M., Sagonas, K. and Fischer, B. (2020). Grammar-
based testing for little languages: an experience report with student compil-
ers. In: Lämmel, R., Tratt, L. and de Lara, J. (eds.), Proceedings of the 13th ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2020,
Virtual Event, USA, November 16-17, 2020, pp. 253–269. ACM.
Available at: https://doi.org/10.1145/3426425.3426946

[151] Veggalam, S., Rawat, S., Haller, I. and Bos, H. (2016). Ifuzzer: An evolu-
tionary interpreter fuzzer using genetic programming. In: Askoxylakis, I.G.,
Ioannidis, S., Katsikas, S.K. and Meadows, C.A. (eds.), Computer Security -
ESORICS 2016 - 21st European Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings, Part I, vol. 9878 of Lecture
Notes in Computer Science, pp. 581–601. Springer.
Available at: https://doi.org/10.1007/978-3-319-45744-4_29

[152] Wang, J., Chen, B., Wei, L. and Liu, Y. (2017). Skyfire: Data-driven seed
generation for fuzzing. In: 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, pp. 579–594. IEEE Computer
Society.
Available at: https://doi.org/10.1109/SP.2017.23

[153] Wang, J., Chen, B., Wei, L. and Liu, Y. (2019). Superion: grammar-aware
greybox fuzzing. In: Atlee, J.M., Bultan, T. and Whittle, J. (eds.), Proceedings
of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, pp. 724–735. IEEE / ACM.
Available at: https://doi.org/10.1109/ICSE.2019.00081

[154] Weimer, W., Forrest, S., Le Goues, C. and Nguyen, T. (2010). Automatic pro-
gram repair with evolutionary computation. Commun. ACM, vol. 53, no. 5,
pp. 109–116.
Available at: https://doi.org/10.1145/1735223.1735249

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/3136014.3136035
https://doi.org/10.1109/ICSE-COMPANION.2009.5071009
https://doi.org/10.1145/3426425.3426946
https://doi.org/10.1007/978-3-319-45744-4_29
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1145/1735223.1735249

166 LIST OF REFERENCES

[155] Weimer, W., Nguyen, T., Le Goues, C. and Forrest, S. (2009). Automatically
finding patches using genetic programming. In: 31st International Conference
on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Pro-
ceedings, pp. 364–374. IEEE.
Available at: https://doi.org/10.1109/ICSE.2009.5070536

[156] Wen, W., Li, B., Sun, X. and Li, J. (2011). Program slicing spectrum-based
software fault localization. In: Proceedings of the 23rd International Conference
on Software Engineering & Knowledge Engineering (SEKE’2011), Eden Roc Re-
naissance, Miami Beach, USA, July 7-9, 2011, pp. 213–218. Knowledge Systems
Institute Graduate School.

[157] Wong, W.E., Debroy, V., Gao, R. and Li, Y. (2014). The dstar method for
effective software fault localization. IEEE Trans. Reliab., vol. 63, no. 1, pp.
290–308.
Available at: https://doi.org/10.1109/TR.2013.2285319

[158] Wong, W.E., Gao, R., Li, Y., Abreu, R. and Wotawa, F. (2016). A survey on
software fault localization. IEEE Trans. Software Eng., vol. 42, no. 8, pp. 707–
740.
Available at: https://doi.org/10.1109/TSE.2016.2521368

[159] Xin, Q. and Reiss, S.P. (2017). Identifying test-suite-overfitted patches
through test case generation. In: Bultan, T. and Sen, K. (eds.), Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pp. 226–236. ACM.
Available at: https://doi.org/10.1145/3092703.3092718

[160] Xiong, Y., Wang, J., Yan, R., Zhang, J., Han, S., Huang, G. and Zhang, L.
(2017). Precise condition synthesis for program repair. In: Uchitel, S., Orso,
A. and Robillard, M.P. (eds.), Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, pp.
416–426. IEEE / ACM.
Available at: https://doi.org/10.1109/ICSE.2017.45

[161] Xu, X., Debroy, V., Wong, W.E. and Guo, D. (2011). Ties within fault local-
ization rankings: Exposing and addressing the problem. Int. J. Softw. Eng.
Knowl. Eng., vol. 21, no. 6, pp. 803–827.
Available at: https://doi.org/10.1142/S0218194011005505

[162] Xue, X. and Namin, A.S. (2013). How significant is the effect of fault inter-
actions on coverage-based fault localizations? In: 2013 ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, Baltimore,
Maryland, USA, October 10-11, 2013, pp. 113–122. IEEE Computer Society.
Available at: https://doi.org/10.1109/ESEM.2013.22

[163] Yang, X., Chen, Y., Eide, E. and Regehr, J. (2011). Finding and understanding
bugs in C compilers. In: Hall, M.W. and Padua, D.A. (eds.), Proceedings of the

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/3092703.3092718
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1142/S0218194011005505
https://doi.org/10.1109/ESEM.2013.22

167

32nd ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pp. 283–294. ACM.
Available at: https://doi.org/10.1145/1993498.1993532

[164] Yoshikawa, T., Shimura, K. and Ozawa, T. (2003). Random program genera-
tor for java JIT compiler test system. In: 3rd International Conference on Quality
Software (QSIC 2003), 6-7 November 2003, Dallas, TX, USA, p. 20. IEEE Com-
puter Society.
Available at: https://doi.org/10.1109/QSIC.2003.1319081

[165] Zakari, A., Lee, S.P., Abreu, R., Ahmed, B.H. and Rasheed, R.A. (2020). Mul-
tiple fault localization of software programs: A systematic literature review.
Inf. Softw. Technol., vol. 124, p. 106312.
Available at: https://doi.org/10.1016/j.infsof.2020.106312

[166] Zalewski, M. (2017). American fuzzy lop.
Available at: https://lcamtuf.coredump.cx/afl/

[167] Zaytsev, V. (2009). Language convergence infrastructure. In: Fernandes, J.M.,
Lämmel, R., Visser, J. and Saraiva, J. (eds.), Generative and Transformational
Techniques in Software Engineering III - International Summer School, GTTSE
2009, Braga, Portugal, July 6-11, 2009. Revised Papers, vol. 6491 of Lecture Notes
in Computer Science, pp. 481–497. Springer.
Available at: https://doi.org/10.1007/978-3-642-18023-1_16

[168] Zaytsev, V. (2014). Negotiated grammar evolution. J. Object Technol., vol. 13,
no. 3, pp. 1: 1–22.
Available at: https://doi.org/10.5381/jot.2014.13.3.a1

[169] Zaytsev, V.V. (2010). Recovery, convergence and documentation of languages.
Ph.D. thesis, Vrije Universiteit.

[170] Zelenov, S.V. and Zelenova, S.A. (2005). Generation of positive and negative
tests for parsers. Program. Comput. Softw., vol. 31, no. 6, pp. 310–320.
Available at: https://doi.org/10.1007/s11086-005-0040-6

[171] Zeller, A. (2009 01). Why programs fail. Why Programs Fail.

[172] Zhang, M., Li, X., Zhang, L. and Khurshid, S. (2017). Boosting spectrum-
based fault localization using pagerank. In: Bultan, T. and Sen, K. (eds.), Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Santa Barbara, CA, USA, July 10 - 14, 2017, pp. 261–272. ACM.
Available at: https://doi.org/10.1145/3092703.3092731

[173] Zhang, M., Li, Y., Li, X., Chen, L., Zhang, Y., Zhang, L. and Khurshid, S.
(2021). An empirical study of boosting spectrum-based fault localization via
pagerank. IEEE Trans. Software Eng., vol. 47, no. 6, pp. 1089–1113.
Available at: https://doi.org/10.1109/TSE.2019.2911283

Stellenbosch University https://scholar.sun.ac.za

https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/QSIC.2003.1319081
https://doi.org/10.1016/j.infsof.2020.106312
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1007/978-3-642-18023-1_16
https://doi.org/10.5381/jot.2014.13.3.a1
https://doi.org/10.1007/s11086-005-0040-6
https://doi.org/10.1145/3092703.3092731
https://doi.org/10.1109/TSE.2019.2911283

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Research Objectives
	The Proposed Solution
	Research Questions
	Summary of Results
	Benefits
	Contributions
	Structure of the Thesis

	Background
	Context-Free Grammars
	Parsing Methods
	Grammar-Based Testing
	Spectrum-Based Fault Localization

	Rule-Level Fault Localization
	Worked Example
	Rule Spectra
	Spectra for Recursive-descent LL Parsers
	Spectra for Table-driven LR Parsers
	Synthetic Spectra
	Evaluation
	Conclusion

	Item-Level Fault Localization
	Worked Example
	Item Spectra
	Implementation
	Evaluation
	Threats to Validity
	Conclusion

	Automatic Grammar Repair
	Repair Framework
	Symbol Editing Patches
	Listification Patches
	Language Tightening Transformations
	Implementation
	Evaluation
	Limitations
	Threats to Validity
	Conclusion

	Related Work
	Spectrum-Based Fault Localization
	Automatic Program Repair
	Grammar-Based Test Suite Generation
	Grammar Engineering
	Grammar Learning
	Error Recovery and Correction

	Conclusions and Future Work
	Conclusions
	Future Work Directions
	Final Remarks

	CDRC Test Suite
	List of References

